Інфрачервоне випромінювання

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Термографія лева, у псевдо-кольорах

Інфрачерво́не випромі́нювання (від лат. infra — нижче, скорочено ІЧ) — оптичне випромінювання з довжиною хвилі більшою, ніж у видимого випромінювання, що відповідає довжині хвилі, більшій від приблизно 750 нм.

Людське око не бачить інфрачервоного випромінювання, органи чуття деяких інших тварин, наприклад, змій та кажанів, сприймають інфрачервоне випромінювання, що допомагає їм добре орієнтуватися в темряві.

Інфрачервоні промені випромінюються всіма тілами, що мають температуру вищу за абсолютний нуль, максимум інтенсивності випромінювання залежить від температури. При підвищенні температури максимум зміщується в бік коротших хвиль, тобто в напрямку видимого діапазону. У зв'язку із залежністю спектру та інтенсивності інфрачервоного випромінювання від температури його часто називають тепловим випромінюванням.

Приблизно 52% загальної інтенсивності випромінювання Сонця над поверхнею моря в сонячний день припадає на інфрачервоний діапазон.

Класифікація за довжиною хвилі[ред.ред. код]

Прозорість земної атмосфери в інфрачервоній області. Провали на графіку відповідають областям поглинання, які асоціюються із різними атмосферними газами

В електромагнітному спектрі інфрачервоне випромінювання обмежене з короткохвильового боку видимим світлом, а з довгохвильового боку — мікрохвильовим випромінюванням, яке належить до радіочастотного діапазону. Границі діапазонів не є строго визначеними.

Існує кілька стандартів класифікації інфра-червоного випромінювання.

За визначенням Міжнародної комісії з освітленості за довжиною хвилі інфрачервоне випромінювання підрозділяється на три діапазони[1]:

  • IR-A — від 700 до 1400 нм,
  • IR-B — від 1400 до 3000 нм,
  • IR-C — від 3000 нм до 1 мм.

Перший із цих діапазонів, IR-A називають також ближніми інфрачервоними хвилями. Він визначається вікном у спектрі поглинання води і здебільшого використовується для оптоволоконних телекомунікацій, бо електромагнітні хвилі цього діапазону слабо поглинаються склом.

За стандартом ISO 20473[2] інфрачервоне випромінювання поділяється на три діапазони

  • ближнє інфрачервоне випромінювання — від 780 до 3000 нм
  • середнє інфрачервоне випромінювання — від 3000 до 50 000 нм
  • далеке інфрачервоне випромінювання — від 50 до 1000 мкм

В астрономії використовується наступна класифікація[3]:

  • ближнє інфрачервоне випромінювання — від 700 до 5000 нм
  • середнє інфрачервоне випромінювання — від 5000 до (25-40) мкм
  • далеке інфрачервоне випромінювання — від (25-40) мкм до (200-350)  мкм

Ще одна схема класифікація основана на чутливості певного типу детекторів[4]

  • Ближнє інфрачервоне випромінювання — це область від 700 до 1000 нм, тобто від приблизної границі людського зору до діапазону кремнієвих детекторів.
  • Короткохвильове інфрачервоне випромінювання — область довжин хвиль від 1 до 3 мікрон, тобто від границі чутливості кремнієвих детекторів до вікна прозорості атмосфери. Детектори на основі InGaAs покривають область до 1,8 мікрон, всю цю область покривають менш чутливі детектори на основі солей свинцю.
  • Середньохвильове інфрачервоне випромінювання — область, що відповідає атмосферному вікну, від 3 до 5 мікрон. В цій області працють детектори на основі антимоніду індію InSb, HgCdTe і почасти на основі PbSe).
  • довгохвильове інфрачервоне випромінювання — за різними визначеннями область довжин хвиль від 8 до 12 мкм, або від 7 до 14 мкм. Це область атмосефрного вікна, в якій працюють детектори на основі HgCdTe та мікроболометри.
  • Дуже довгохвильове червоне випромінювання — область довжин хвиль від 12 до 30 мкм, де працюють детектори на основі легованого кремнію.

Використання[ред.ред. код]

Докладніше у статті Інфрачервона спектроскопія
Докладніше у статті Теплобачення

Інфрачервона спектроскопія дозволяє отримати інформацію про структуру молекул і твердих тіл і типи атомних коливань у них. На інфрачервоний діапазон припадають частоти коливань атомів у молекулах і твердих тілах, а також, частково, частоти електронних переходів. В цій області лежать ширини заборонених зон вузькозонних напівпровідників, що створює можливості для використання напівпровідникових речовин у якості детекторів інфрачервоного світла й джерел електромагнітних хвиль у телекомунікаційних приладах. Матеріали, такі як кремній мають невелику ширину забороненої зони, а тому прозорі тільки в інфрачервоній області спектру. Відповідно, виготовлені на основі кремнію світлодіоди та лазери випромінюють тільки інфрачервоні хвилі. Інфрачервона спектроскопія особливо ефективна при дослідженні органічних речовини, оскільки частоти нормальних мод, що відповідають коливанням у радикалах на кшталт CH2 добре відомі.

Одним із застосувань інфрачервоного випромінювання є прилади нічного бачення, що реєструють теплове випромінювання предметів оточення і перетворюють його у видиме зображення. У військовій техніці інфрачервоні промені використовуються також для наведення ракет на теплове випромінювання літаків і гелікоптерів.

Інфрачервоні світлодіоди і фотодіоди використовуються в пультах дистанційного керування, системах автоматики, пожежних сповіщувачах, охоронних системах і т. д. Вони не відволікають увагу людини в силу своєї невидимості.

Інфрачервоні випромінювачі застосовують у промисловості для сушіння лакофарбових поверхонь. Інфрачервоний метод сушіння має істотні переваги перед традиційним, конвекційним методом. У першу чергу це, безумовно, економічний ефект. Час роботи і витрачена енергія при сушінні інфрачервоними променями менше тих же показників при традиційних методах. Позитивним побічним ефектом так само є стерилізація харчових продуктів, збільшення стійкості до корозії поверхонь що покриваються фарбами. Недоліком же є істотно велика нерівномірність нагрівання, що в ряді технологічних процесів абсолютно неприйнятно. Особливістю застосування ІЧ-випромінювання в харчовій промисловості є можливість проникнення електромагнітної хвилі у такі капілярно-пористі продукти, як зерно, крупа, борошно тощо на глибину до 7 мм. Ця величина залежить від характеру поверхні, структури, властивостей матеріалу і частотної характеристики випромінювання. Електромагнітна хвиля певного частотного діапазону надає не тільки термічне, а й біологічний вплив на продукт, сприяє прискоренню біохімічних перетворень в біологічних полімерах (крохмаль, білок, ліпіди). Конвеєрні сушильні транспортери з успіхом можуть використовуватися при закладці зерна в зерносховища і в борошномельный промисловості.

Крім того, останнім часом інфрачервоне випромінювання дедалі частіше починають застосовувати для обігріву приміщень та вуличних просторів. Інфрачервоні обігрівачі використовуються для організації додаткового або основного опалення у приміщеннях (будинках, квартирах, офісах і т.п.), а також для локального обігріву вуличного простору (вуличні кафе, альтанки, веранди).

Парниковий ефект[ред.ред. код]

Докладніше у статті Парниковий ефект

Поглинання і повторне випромінювання інфрачервоного світла деякими газами є причиною парникового ефекту, що значно підвищує температуру поверхні планет, зокрема Землі.

Історична довідка[ред.ред. код]

Інфрачервоне випромінювання відкрив у 1800 році Вільям Гершель, досліджуючи розподіл енергії в спектрі при допомозі чутливого термометра.

Див. також[ред.ред. код]

Виноски[ред.ред. код]

  1. Henderson, Roy. «Wavelength considerations». Instituts für Umform- und Hochleistungs. Архів оригіналу за 2007-10-28. Процитовано 2007-10-18. 
  2. «ISO 20473:2007». ISO.  Текст «author » проігноровано (довідка);
  3. IPAC Staff. «Near, Mid and Far-Infrared». NASA ipac. Архів оригіналу за 2013-05-29. Процитовано 2007-04-04. 
  4. Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1992), and Miller and Friedman, Photonic Rules of Thumb, 2004. ISBN 978-0-442-01210-6Шаблон:Page needed