Бієкція

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Бієкція (бієктивна функція, бієктивне відображення, взаємно однозначна відповідність) — в математиці відображення, яке є одночасно сюр'єктивним та ін'єктивним.

Інтуїтивно можна визначити бієкцію як відповідність, яка асоціює один елемент вхідної множини з одним і тільки одним елементом результуючої множини і навпаки, одному елементу результуючої множини співставляється один і лише один елемент вхідної множини.

Тобто, відображення f: XY є бієктивним, коли кожному елементу y з множини Y співставлений один і лише один елемент x з множини X, і f(x) = y.

В теорії множин стверджується, що бієкцію між двома множинами X та Y можна встановити тоді і лише тоді, коли ці множини є рівнопотужними.

Bijection.svg

Бієктивне відображення (сюр'єктивне та ін'єктивне)

Injection.svg

Ін'єктивне, але не сюр'єктивне відображення

Surjection.svg

Сюр'єктивне, але не ін'єктивне відображення

Total function.svg

Несюр'єктивне і неін'єктивне відображення

Приклади[ред.ред. код]

Нехай функція f: RR має вигляд: f(x) = 2x + 1. Ця функція є бієктивною, тому що для будь-якого y ∈ R, існує єдиний розв'язок рівняння y = 2x + 1 відносно x: x = (y − 1)/2.

З іншого боку, функція g: RR, визначена як g(x) = x2 не є бієктивною з двох причин. По-перше маємо g(1) = 1 = g(−1), тобто g не є ін'єктивною, і, по-друге, не існує такого xR, щоби x2 = −1, тобто g не є також і сюр'єктивною. Тому, виходячи з визначення бієкції, ця функція не є бієктивною.

Властивості[ред.ред. код]

  • Відображення f: XY є бієктивним тоді й тільки тоді, якщо існує відображення g: YX таке, що композиція g та f (позначається g o f) є тотожним (нейтральним) відображенням на X, а f o g є тотожним відображенням на Y. Відображення g позначається як f−1 і має назву оберненого відображення.
  • Якщо f o g — бієктивна, то f сюр'єктивна, а g ін'єктивна.
  • Якщо f та g є бієктивні, то f o g також бієктивна.

Див. також[ред.ред. код]

Джерела[ред.ред. код]