Відношення

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Цей термін має також інше значення: відношення a до b — це те саме, що дріб з чисельником a та знаменником b.

Відношенням (n-місним відношенням) в теорії множин називається підмножина декартового степеня Mn деякої множини M. Кажуть також, що елементи a1,a2,…,anM знаходяться у відношенні R, якщо кортеж (a1,a2,…,an)∈R.

До відношень можна застосовувати теоретико-множинні операції і алгебру множин.

Поняття відношення є певним теоретико-множинним узагальненням відомого з елементарної арифметики набору таких відношень, як «=» (дорівнює) або «<» (менше). Поняття відношення і операцій з ними в практичних застосуваннях грає ключову роль в побудові реляційних моделей систем управління базами даних.

В математичній літературі часто не розрізняють поняття відношення та відповідності між множинами (тобто, в такому випадку, відношення можуть мати місце між різними множинами). В цій енциклопедії поняття відношення на множині та відношення між множинами (відповідності між множинами) розрізняються, якщо інше не вказано окремо.

Унарне відношення[ред.ред. код]

При n=1 відношення RM називають одномісним або унарним. Таке відношення часто називають також ознакою або характеристичною властивістю елементів множини M. Кажуть, що елемент aM має ознаку R, якщо a∈R і R⊆M.

Бінарне відношення[ред.ред. код]

Докладніше дивись статтю Бінарне відношення

Широко вживаними в математиці та прикладних науках є двомісні або бінарні відношення (тобто відношення з n=2)

Якщо елементи a, b∈M знаходяться в бінарному відношенні R (тобто визначена впорядкована пара (a, b)∈R), то це часто записують у вигляді aRb. Слід зауважити також, що бінарні відношення іноді розглядають, як окремий випадок відповідностей, а саме — як відповідності між однаковими множинами.

Приклади бінарних відношень на множині натуральних чисел N:

  • R1 — відношення ≤ («менше або дорівнює»), тоді 4 R1 19, 5 R1 15 і т. д. для будь-якого m ∈N
  • R2 — відношення «ділиться на», тоді 4 R2 23, 49 R2 27, m R2 21 для будь-якого m∈N
  • R3 — відношення «є взаємно простими», тоді 15 R3 38, 366 R3 3121, 1001 R3 3612
  • R4 — відношення «складаються з однакових цифр», тоді 127 R4 4721, 230 R4 4302, 3231 R4 43213311

Див. також[ред.ред. код]

Джерела[ред.ред. код]