Гра кооперативна

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Гра кооперати́вна — нестратегічна гра багатьох гравців з утворенням коаліцій, в якій допускається необмежений перерозподіл виграшів у формі так званих побічних платежів.

Основи теорії кооперативних ігор розробили американські вчені Дж. фон Нойман та Моргенштерн Оскар. Спочатку, конструювання кооперативних ігор робилось на основі безкоаліційних ігор. А саме, в грі з множиною гравців I, для кожної коаліції KI розглядали антагоністичну гру K проти додаткової до неї коаліції I\K. Значення цієї гри, яке позначається як ν(K), є функцією від K, яка називається характеристичною функцією. Деякі кооперативні ігри можуть бути задані безпосередньо своїми характеристичними функціями. Прикладами таких ігор є схеми голосування, а також моделі ринків.

Формальне визначення[ред.ред. код]

Кооперативну гру визначають формально як пару <I, ν>, де I = {1, 2, …, n} — множина гравців, а ν — характеристична функція, визначена на підмножинах I. Вектор виграшів гравців є розподілом гри. В якості множини всіх розподілів, як правило, приймають

A = \left\{ x = (x_1, ..., x_n) \in E^n:\; x_i \geq \nu(i),\;  \sum_{i=1}^n x_i = \nu(I)\right\}

На цій множині визначають відношення домінування: розподіл x=(x1, …, xn) домінує (домінує над) розподіл y=(y1, …, yn) (позначення x \succ y), якщо знайдеться така коаліція K, що

\sum_{i\in K} x_i \leq \nu(K) та xi>yi для всіх iK.

Перша умова називається ефективністю коаліції K для розподілу x. Ця умова показує, що коаліція може порівнювати тільки такі розподіли, в яких вона може забезпечити долі всіх своїх учасників.

Множина елементів, максимальних відносно домінування, називається c-ядром. Для відношення домінування розподілів, важливу роль грає розв'язок по Нейману-Моргенштерну. Однак, нормативна сутність розв'язку має ряд недоліків: розв'язок може складатись більш ніж із одного розподілу; він може бути не єдиним; відомий приклад гри (десяти осіб), яка не має розв'язку.

Окрім класичної кооперативної теорії, розвивається ряд нових теорій, які також основані на характеристичній функції.

Джерела інформації[ред.ред. код]

Див. також[ред.ред. код]


Теорія ігор

Типи ігор

антагоністичні · диференціальні · матричні · на виживання · рефлексивні · азартні · без побічних платежів · безкоаліційні · біматричні · вироджені · динамічні · з вибором моменту часу · кооперативні · на графі · на одиничному квадраті · опуклі · позиційні · прості · рекурсивні · стохастичні 

Ситуації

Безвиграшна ситуація · Парадокс Бертрана (економіка) · Ситуація рівноваги 

Стратегія

змішана · оптимальна · поведінки · чиста 

Теореми

Максіміна принцип · Мінімаксу теорема

Ігри

Дилема в'язня · РВ-ПП