Еволюційні експерименти

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Бактерії E. coli. Знімок скануючим електронним мікроскопом

Еволюційні експерименти

Початкові етапи видоутворення відтворено в експерименті на дріжджах[ред.ред. код]

Біологи з Торонтського університету (Канада) провели на дріжджах досліди по штучному видоутворенню. Раніше в подібних експериментах намагалися (і часом успішно) отримати поведінкову презиготичну ізоляцію, тобто небажання представників ліній, що разійшлися, схрещуватися одна з одною. На цей раз вдалося отримати постзиготичну ізоляцію, тобто зниження життєздатності гібридів. Дріжджі, що вирощувалися протягом 500 поколінь в контрастних несприятливих умовах високої солоності або низького вмісту глюкози, виявилися постзиготично ізольованими як одні від одних, так і від предкової лінії[1].

В довготривалому експерименті зафіксовано поетапне формування еволюційного нововведення[ред.ред. код]

В ході довгострокового еволюційного експерименту на бактеріях E. coli в одній з 12 піддослідних популяцій після 31000 поколінь з'явилася нова корисна ознака — здатність живитися цитратом в аеробних умовах. Як з'ясувалося, формування еволюційного нововведення проходило в три етапи. На першому етапі («потенціювання») зафіксувалися мутації, що допомагають утилізувати цитрат, якщо він виявиться в клітині. Повторні експерименти з розмороженими представниками предкових поколінь показали, що потенціюючих мутацій було як мінімум дві: одна з'явилася після 15000 поколінь, інша після 20000. На другому етапі («актуалізація») змінилася регуляція гена citT, відповідального за поглинання цитрату із зовнішнього середовища. В результаті ген став працювати в присутності кисню, хоча в нормі у E. coli він працює тільки в анаеробних умовах. Це призвело до появи слабо вираженою, «зародковій» здатності використовувати в їжу цитрат. Нарешті, на етапі «вдосконалення» нова функція була багаторазово посилена завдяки декільком дуплікаціям (подвоєння) фрагмента хромосоми, що несе активований ген citT. Тільки після цього чисельність бактерій-мутантів збільшилася і вони стали домінувати в своїй популяції. Ймовірно, такий поетапний розвиток характерний і для інших еволюційних нововведень[2].

Результати еволюційного експерименту тривалістю в 40000 поколінь[ред.ред. код]

В ході унікального експерименту, що тривав понад 20 років, вдалося детально простежити еволюційні зміни, що відбувалися в популяції кишкової палички Escherichia coli протягом 40000 поколінь. У першій половині експерименту в популяції фіксувалися в основному корисні мутації, що підвищують пристосованість бактерій. Досить несподіваним результатом виявилося те, що швидкість накопичення корисних мутацій була майже сталою. Досі вважалося, що з постійною швидкістю повинні накопичуватися нейтральні мутації, а не корисні, однак в експерименті все виявилося навпаки. У середині експерименту в популяції зафіксувалася мутація, що різко підвищувала темп мутагенезу. Після цього мутації стали фіксуватися на порядок швидше, але це були в основному вже не корисні, а нейтральні мутації[3].

Багатофункціональні гени — основа для еволюційних нововведень[ред.ред. код]

Багато генів виконують в організмі відразу дві або більше функцій. При цьому виникає «адаптивний конфлікт»: мутації, що поліпшують одну з функцій, шкодять іншій і тому не можуть закріпитися. Біологам з Університету Дьюка (США) вдалося показати на конкретному прикладі, що дуплікація біфункціонального гена призводить до розподілу праці між виниклими копіями. Кожна з копій оптимізується для вирішення одного з двох завдань, та виконання обох функцій в результаті стає більш ефективним[4].

Шкідники контролюють еволюцію рослин[ред.ред. код]

У двох незалежних дослідженнях отримані експериментальні підтвердження важливої ролі рослиноїдних комах в еволюції рослин. Еволюційні експерименти на арабідопсисі Таля (Arabidopsis thaliana) та енотері дворічній (Oenothera biennis) показали, що рослини, які синтезують різні захисні речовини, отримують селективну перевагу в залежності від переважання тих чи інших шкідників. У відсутність шкідників в піддослідних популяціях поширювалися генотипи, що забезпечують прискорене зростання і підвищену конкурентоспроможність у поєднанні з ослабленою захистом від шкідників. Генофонди популяцій, які розвивалися в різних умовах, починали істотно розрізнятися вже після 1-2 поколінь. Це свідчить про те, що рослиноїдні комахи - потужний фактор відбору, здатний забезпечити швидку еволюцію і високий рівень генетичної різноманітності рослин[5]

Процес появи нових ферментів прослідковано в эволюційному експерименті[ред.ред. код]

Експерименти на бактерії Salmonella enterica показали, що нові ферменти можуть виникати за схемою «інновація - ампліфікація - дивергенція». Спочатку у фермента в результаті мутації з'являється додаткова каталітична активність («інновація»). Якщо нова функція виявиться корисною, відбір підтримає ампліфікація (поява додаткових копій) зміненого гена. Надалі з великою ймовірністю відбудеться поділ праці між копіями («дивергенція»): одні копії оптимізуються відбором для виконання старої функції, інші - для нової. У строгій відповідності з цією схемою з фермента, що бере участь у синтезі амінокислоти гістидину, в ході еволюційного експерименту був отриманий фермент, що каталізує один з етапів синтезу триптофану[6].

Нові види рослин можна створювати за допомогою горизонтального переносу повних ядерних геномів[ред.ред. код]

Німецькі і польські біологи показали, що між клітинами прищепи та підщепи може відбуватися горизонтальний перенос не тільки пластидних геномів, а й ядерних. Прищеплюючи один до одного звичайний тютюн Nicotiana tabacum і тютюнове дерево Nicotiana glauca, вдалося отримати аллополіплоїдні клітини, що містять в одному ядрі обидва диплоїдних хромосомних набори батьківських видів. З цих клітин було вирощено повноцінні рослини, що поєднують ознаки обох батьків і здатні виробляти життєздатне насіння. За формальними критеріями ці рослини заслуговують виділення в особливий вид, що отримав назву Nicotiana tabauca[7] [8].

Посилання[ред.ред. код]

  • Грант В. Эволюционный процесс. Критический обзор эволюционной теории. — М.: Мир, 1991. — 488 с.

Примітки[ред.ред. код]

Ресурси Інтернету[ред.ред. код]