Метод Крамера

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Метод Крамера (Крамера правило) — спосіб розв'язання квадратних систем лінійних алгебраїчних рівнянь із ненульовим визначником основної матриці (при цьому для таких рівнянь розв'язок існує і є єдиним). Метод було створено Габріелем Крамером у 1750 році.

Опис методу[ред.ред. код]

Для системи n лінійних рівнянь з n невідомими (над довільним полем)

\begin{cases}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1\\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots\cdots\\ 
a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n\\
\end{cases}

з визначником матриці системи  \Delta , що не рівний нулю, розв'язок записується у такому вигляді:

x_i=\frac{1}{\Delta}\begin{vmatrix} 
a_{11} & \ldots & a_{1,i-1} & b_1  & a_{1,i+1} & \ldots & a_{1n} \\
a_{21} & \ldots & a_{2,i-1} & b_2 & a_{2,i+1} & \ldots & a_{2n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1,1} & \ldots & a_{n-1,i-1} & b_{n-1} & a_{n-1,i+1} & \ldots & a_{n-1,n} \\
a_{n1} & \ldots & a_{n,i-1} & b_n & a_{n,i+1} & \ldots & a_{nn} \\
\end{vmatrix}

(i-й стовпчик матриці системи замінюється стовпчиком вільних членів).

Іншим чином правило Крамера формулюється так: для будь-яких коефіцієнтів c1, c2, …, cn виконується рівність:

(c_1x_1+c_2x_2+\dots+c_nx_n)\cdot\Delta = -\begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n} & b_1\\
a_{21} & a_{22} & \ldots & a_{2n} & b_2\\
\ldots & \ldots & \ldots & \ldots & \ldots\\
a_{n1} & a_{n2} & \ldots & a_{nn} & b_n\\
c_{1}  & c_{2}  & \ldots & c_{n}  & 0\\
\end{vmatrix}

У такій формі формула Крамера справедлива без припущення, що \Delta не рівне нулю, не треба, навіть, аби коефіцієнти системи були елементами цілісного кільця (визначник системи навіть може бути дільником нуля у кільці коефіцієнтів). Також можна вважати, що або набори b_1,b_2,...,b_n та x_1,x_2,...,x_n, або набір c_1,c_2,...,c_n складаються не з елементів кільця коефіциєнтів системи, а деякого модуля над цим кільцем. В такому вигляді формула Крамера використовується, наприклад, при доведенні формули для визначника Грама і Леми Накаями.

Приклад[ред.ред. код]

Система лінійних рівнянь:

\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1\\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2\\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3\\
\end{cases}

Визначники:

\Delta=\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{vmatrix},\ \ \Delta_1=\begin{vmatrix}
b_1 & a_{12} & a_{13} \\
b_2 & a_{22} & a_{23} \\
b_3 & a_{32} & a_{33} \\
\end{vmatrix},\ \ \Delta_2=\begin{vmatrix}
a_{11} & b_1 & a_{13} \\
a_{21} & b_2 & a_{23} \\
a_{31} & b_3 & a_{33} \\
\end{vmatrix},\ \ \Delta_3=\begin{vmatrix}
a_{11} & a_{12} & b_1 \\
a_{21} & a_{22} & b_2 \\
a_{31} & a_{32} & b_3 \\
\end{vmatrix}

Розв'язок:

x_1=\frac{\Delta_1}{\Delta},\ \ x_2=\frac{\Delta_2}{\Delta},\ \ x_3=\frac{\Delta_3}{\Delta}


Приклад:

\begin{cases}
2x_1 + 5x_2 + 4x_3 = 30\\
x_1 + 3x_2 + 2x_3 = 150\\
2x_1 + 10x_2 + 9x_3 = 110\\
\end{cases}

Визначники:

\Delta=\begin{vmatrix}
2 & 5 & 4 \\
1 & 3 & 2 \\
2 & 10 & 9 \\
\end{vmatrix}=5,\ \ \Delta_1=\begin{vmatrix}30&5&4\\150&3&2\\
110 & 10 & 9 \\
\end{vmatrix}=-760,\ \ \Delta_2=\begin{vmatrix}
2 & 30 & 4 \\
1 & 150 & 2 \\
2 & 110 & 9 \\
\end{vmatrix}=1350,\ \ \Delta_3=\begin{vmatrix}
2 & 5 & 30 \\
1 & 3 & 150 \\
2 & 10 & 110 \\
\end{vmatrix}=-1270.

x_1=-\frac{760}{5}=-152,\ \ x_2=\frac{1350}{5}=270,\ \ x_3=-\frac{1270}{5}=-254

Джерела[ред.ред. код]