Органічна хімія

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Структура молекули метану: найпростішого вуглеводню.
Молекула метану

Органі́чна хі́мія — один з найважливіших розділів хімії, який вивчає структуру та властивості органічних сполук. Органічними називають сполуки вуглецю з іншими елементами. Здатність вуглецю з'єднуватися з більшістю елементів і утворювати молекули різного складу і будови обумовлює різноманіття органічних сполук (до кінця XX століття їх число перевищило 10 млн, зараз більше 20 млн). Органічні сполуки відіграють ключову роль в існуванні живих організмів.

Органічна хімія — галузь науки, яка займається розробленням методів синтезу та вивченням будови, властивостей, реакційної здатності органічних сполук різних класів.

Основною метою фундаментальних досліджень у галузі органічної хімії є:

Історія органічної хімії

Див. також Історія хімії
Фрідріх Велер — хімік, який першим синтезував сечовину в 1828 році

Способи отримання різних органічних речовин були відомі ще з давнини. Єгиптяни і римляни використовували барвники індиго і алізарин, що містяться в рослинах. Багато народів знали секрети виробництва спиртних напоїв і оцту з сировин, які містять цукор і крохмаль.

За часів середньовіччя до цих знань нічого не додалося, деякий прогрес почався тільки в XVI–XVII століттях: були отримані деякі речовини, в основному шляхом перегонки певних рослинних продуктів. У 17691785 роках Шеєле виділив кілька органічних кислот, таких як яблучна, лимонна, винна, галова, молочна і щавелева. У 1773 році Руель виділив з людської сечі сечовину.

Виділені з тваринної або рослинної сировини продукти мали між собою багато спільного, але відрізнялися від неорганічних сполук. Так виник термін «Органічна хімія» — розділ хімії, котрий вивчає речовини, виділені з організмів (визначення Берцеліуса, 1807 р.).

Однак, цю ідею було спростовано в 1828 році, коли німецький дослідник Фрідріх Велер вперше синтезував сечовину (яка є біологічно важливою органічною речовиною) шляхом випаровування водного розчину типової неорганічної солі, ціанату амонію NH4OCN. Ця дата часто вважається початком органічної хімії як наукової дисципліни. Але справжнє сприйняття органічної хімії як незалежної дисципліни відбулось дещо пізніше, в другій половині ХІХ ст.

Важливим етапом стала розробка теорії валентності Купером і Кекуле в 1857 році, а також теорії хімічної будови Бутлеровим в 1861 році. В основу цих теорій були покладені чотиривалентність Карбону і його здатність до утворення ланцюгів. У 1865 році Кекуле запропонував структурну формулу бензену, що стало одним з найважливіших відкриттів в органічній хімії. У 1875 році Вант-Гофф і Ле Бель запропонували тетраедричну модель атома Карбону, за якою валентності Карбону направлені до вершин тетраедра, якщо атом Карбону помістити в центр цього тетраедра. У 1917 Льюїс запропонував розглядати хімічний зв'язок за допомогою електронних пар.

У 1931 році Хюккель застосував квантову теорію для пояснення властивостей альтернантних ароматичних вуглеводнів, чим заснував новий напрям в органічній хімії — квантову хімію. У 1933 році Інгольд провів вивчення кінетики реакції заміщення біля насиченого атома Карбону, що призвело до масштабного вивчення кінетики більшості типів органічних реакцій.

Предметом вивчення були переважно субстанції біологічного походження. Але науково-технічний прогрес не стояв на місці, і з часом основною матеріальною базою органічної хімії стала кам'яновугільна смола, що виділяється при отриманні коксу прожарюванням кам'яного вугілля. Саме на основі переробки кам'яновугільної смоли вкінці XIX століття виник основний органічний синтез. У 50-60 роках XX століття відбувся перехід основного органічного синтезу на нову базу — нафту. Таким чином з'явилася нова галузь хімії — нафтохімія. Величезний потенціал, який був закладений у нову сировину викликав бум в органічній хімії і хімії взагалі. Виникнення та інтенсивний розвиток такої області як хімії полімерів зобов'язана перш за все нової сировинної бази.

Попри те, що сучасна органічна хімія як матеріальну базу і далі використовує сировину біологічного походження і кам'яновугільну смолу, обсяг переробки цих видів хімічної сировини порівняно з переробкою нафти малий. Зміна матеріально-сировинної бази органічної хімії була викликана насамперед можливостями нарощування обсягів виробництва.

Основними віхами в історії органічної хімії були:

Основні напрямки досліджень в органічній хімії

Основні напрямки досліджень:

Класифікація органічних сполук

Правила та особливості класифікації

В основі класифікації лежить структура органічних сполук. Основа опису структури — структурна формула. Атоми елементів позначаються латинськими символами, як вони позначені в періодичній таблиці хімічних елементів (таблиці Менделєєва). Водневий і електронодефіцітний зв'язки позначаються пунктирною лінією, іонний зв'язок позначається зазначенням зарядів частинок, що входять до складу молекули. Оскільки в переважну більшість органічних молекул входить водень, його зазвичай не позначають при зображенні структури. Отже, якщо в структурі у одного з атомів зображена недостатня валентність, значить, біля цього атома розташований один або кілька атомів водню. Атоми можуть утворювати циклічні і ароматичні системи.

Основні класи органічних сполук

  • Вуглеводні — сполуки, що складаються тільки з атомів вуглецю і водню. Вони в свою чергу діляться на:
    • Насичені — не містять кратних зв'язків в своїй структурі (алкани);
    • Ненасичені — мають у своєму складі хоча б один подвійний (алкени) і / або потрійний зв'язок (алкіни).
    • З відкритим ланцюгом;
    • З замкнутим ланцюгом — містять цикл (циклічні).

Будова органічних молекул

Органічні молекули в основному утворені ковалентними неполярними зв'язками C-C, або ковалентними полярними типу C-O, C-N, C-Hal. Згідно з октетною теорією Льюїса і Косселя молекула є стійкою, якщо зовнішні орбіталі всіх атомів повністю заповнені. Для таких елементів як C, N, O, галогени потрібно 8 електронів, щоб заповнити зовнішні валентні орбіталі, для водню необхідно тільки 2 електрони. Полярність пояснюється зміщенням електронної густини у бік більш електронегативного атома. Класична теорія валентних зв'язків не спроможна пояснити всі типи зв'язків, що існують в органічних сполуках, тому сучасна теорія використовує методи молекулярних орбіталей і квантовохімічні методи.

Будова органічної речовини

Властивості органічних речовин визначаються не тільки будовою їх молекул, але й числом і характером їх взаємодій із сусідніми молекулами, а також взаємним просторовим розташуванням. Найбільш яскраво ці фактори проявляються у відмінності властивостей речовин, що знаходяться в різних агрегатних станах. Так, речовини, легко взаємодіють у вигляді газу, можуть зовсім не реагувати в твердому стані, або приводять до інших продуктів. У твердих органічних речовинах, в яких найбільш яскраво проявляються ці фактори, розрізняють органічні кристали і аморфні тіла. Їх описом займається наука «хімія органічного твердого тіла», основу якої пов'язують з ім'ям радянського фізика-кристалографа А. І. Китайгородського. Приклади корисних органічних твердих тіл — органічні люмінофори, різноманітні полімери, сенсори, каталізатори, електропровідники, магніти та ін.

Визначення структури органічних сполук

За весь час існування органічної хімії як науки важливим завданням було точно визначити структуру органічних сполук. Тобто точно встановити, які атоми входять до складу сполуки, у якому порядку ці атоми зв'язані між собою і як розташовані в просторі.

ІЧ спектр хіноліну

Існує кілька методів вирішення цих завдань.

Описаних вище методів, як правило, повністю вистачає для визначення структури невідомої речовини.

Фізичні властивості органічних сполук

Для всіх комерційно доступних органічних сполук досліджують їхні кількісні і якісні властивості. До кількісних характеристик належать температура плавлення, температура кипіння та показник заломлення. До якісних характеристик належать запах, консистенція, розчинність і колір.

Характеристики плавлення і кипіння

На відміну від неорганічних сполук, органічні сполуки зазвичай плавляться, багато з них киплять. Раніше температури плавлення і кипіння були ключовими показниками при визначенні речовини і її чистоти. Температури плавлення і кипіння також корелюють з полярністю молекул, їхньою молекулярною масою. Деякі органічні сполуки, особливо симетричні, здатні сублімувати, тобто випаровуватись з твердого стану, без переходу в рідкий. Органічні сполуки не є дуже стійкими при температурах вище 300 °C, хоча існують деякі винятки.

Розчинність

Нейтральні органічні сполуки в основному є гідрофобними, тобто вони краще розчиняються в органічних розчинниках, ніж у воді. До винятків належать органічні сполуки, які здатні іонізуватись, а також низькомолекулярні спирти, аміни та карбоксильні кислоти, які здатні зв'язуватись водневими зв'язками. Органічні сполуки краще розчиняються в органічних розчинниках. Такі розчинники можуть бути як чистою речовиною (наприклад, діетиловий ефір або етиловий спирт), так і сумішшю (наприклад, петролейний ефір). Розчинність в різних розчинниках залежить від типу розчинника, його полярності та наявних функціональних груп.

Властивості в твердому стані

Різноманітні спеціалізовані властивості молекулярних кристалів та органічних полімерів з спряженою π-системою можуть визначатись залежно від застосування цих речовин. Наприклад, визначаються такі термомеханічні та електромеханічні властивості, як п'єзоелектричність, електропровідність, та електрооптичні властивості (наприклад, для нелінійної оптики).

Особливості органічних реакцій

Повний синтез афлатоксину В12.

У неорганічних реакціях зазвичай беруть участь іони, реакції проходять швидко і до кінця при кімнатній температурі. В органічних реакціях часто відбуваються розриви ковалентних зв'язків з утворенням нових. Як правило, ці процеси вимагають особливих умов: певної температури, часу реакції, і часто наявності каталізатора. Зазвичай протікає не одна, а відразу кілька реакцій і вихід цільової речовини досить часто не перевищує 50 %. Тому при зображенні органічних реакцій використовують не рівняння, а схеми без розрахунку стехіометрії.

Реакції можуть протікати дуже складним чином і в кілька стадій, не обов'язково так, як реакція умовно зображена на схемі. Як проміжні продукти (інтермедіати) можуть виникати карбокатіони R+, карбаніони R, радикали R·, карбени CX2, катіон-радикали, аніон-радикали та інші активні або нестабільні частинки, які зазвичай живуть долі секунди. Детальний опис всіх перетворень, що відбуваються на молекулярному рівні під час реакції, називається механізмом реакції.

Реакції класифікуються залежно від способів розриву і утворення зв'язків, способів збудження реакції, її молекулярності.

Основні типи органічних реакцій

Основними типами кислотно-основних органічних реакцій є:

Закономірності вільнорадикальних реакцій за участю органічних молекул є дуже відмінними від кислотно-основних і здебільшого розглядаються в рамках фізичної хімії та хімії високомолекулярних сполук (коли йдеться про радикальну полімеризацію).

Див. також

Література

  • Глосарій термінів з хімії // Й. Опейда, О. Швайка. Ін-т фізико-органічної хімії та вуглехімії ім. Л. М. Литвиненка НАН України, Донецький національний університет — Донецьк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
  • ВАК України. Паспорт спеціальності. N 17-09/1 від 29.01.98
  • Гупало О. П. Органічна хімія : підручник / О. П. Гупало, О. П. Тушницький. — 2-ге вид., перероб. і доп. — К. : Знання, 2010. — 431с. — ISBN 978-966-346-414-5
  • Органічна хімія [Текст] : підручник для студ. вищих навч. закл. І-ІІ рівнів акредитації та учнів загальноосвітніх шкіл з класами поглибленого вивчення хімії / В. П. Черних, І. С. Гриценко, Н. М. Єлисєєва; ред. В. П. Черних. — Харків : Оригінал, 2004. — 464 с. : іл. — ISBN 966-615-235-5. — ISBN 966-649-014-5
  • Ластухін Ю. О. Органічна хімія / Ю. О Ластухін, С. А. Воронов. — Львів: Центр Європи, 2001. — 868 с. — ISBN 966-7022-19-6
  • Штеменко Н. І. Органічна хімія та основи статичної біохімії / Штеменко Н. І., Соломко З. П., Авраменко В. І. — Дніпропетровськ. Видавництво ДНУ, 2003. — 644 с. — ISBN 966-551-117-3.
  • Clayden, Jonathan; Greeves, Nick; Warren, Stuart; Wothers, Peter (2012). Organic Chemistry (2nd ed.). Oxford University Press. — 1250 p. — ISBN 978-019-927-029-3.