Радій

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Запит Ra перенапраялє на цю сторінку. Дивіться також інші значення

Радій (Ra)
Атомний номер 88
Зовнішній вигляд
простої речовини
сріблясто-білий
радіоактивний метал
Властивості атома
Атомна маса
(молярна маса)
226,0254 а.о.м. (г/моль)
Радіус атома n/a пм
Енергія іонізації
(перший електрон)
509,0(5,28) кДж/моль (еВ)
Електронна конфігурація [Rn] 7s2
Хімічні властивості
Ковалентний радіус n/a пм
Радіус іона (+2e) 143 пм
Електронегативність
(за Полінгом)
0,9
Електродний потенціал Ra←Ra2+ -2,916В
Ступені окиснення 2
Термодинамічні властивості
Густина (5,5) г/см³
Питома теплоємність 0,120 Дж/(K моль)
Теплопровідність (18,6) Вт/(м К)
Температура плавлення 973 K
Теплота плавлення (9,6) кДж/моль
Температура кипіння 1413 K
Теплота випаровування (113) кДж/моль
Молярний об'єм 45,0 см³/моль
Кристалічна ґратка
Структура ґратки
Період ґратки n/a Å
Відношення c/a n/a
Температура Дебая n/a K
Періодична система елементів
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Радій (англ. radium, нім. Radium, рос. радий) — радіоактивний хімічний елемент. Символ Ra, атомний номер 88. Відкритий у 1898 році П'єром Кюрі і Марією Склодовською-Кюрі.

Історія[ред.ред. код]

Відкритий П'єром та Марією Кюрі з допомогою їх помічника Густава Бемона[1] (за іншими джерелами — Жака Бемона[2]) у 1898 році.

Французькі вчені П'єр і Марія Кюрі виявили, що відходи, які залишаються після виділення урану з уранової руди (уранова смола, що видобувається в місті Яхимів, Чехія) радіоактивніші за чистий уран. З цих відходів подружжя Кюрі після кількох років інтенсивної роботи виділили два сильно радіоактивних елементи: полоній і радій. Перше повідомлення про відкриття радію (у вигляді суміші з барієм) Кюрі зробили 26 грудня 1898 у Французькій академії наук. У 1902 Кюрі і Андре Деб'єрн виділили чистий радій шляхом електролізу хлориду радію на ртутному катоді і подальшої дистиляції у водні. Виділений елемент був, як зараз відомо, ізотоп радій-226, продукт розпаду урану-238. За відкриття радію та полонію подружжя Кюрі отримали Нобелівську премію. Радій утворюється через багато проміжних стадій при радіоактивному розпаді ізотопу урану-238 і тому знаходиться в невеликих кількостях в урановій руді. Багато радіонуклідів, що виникають при радіоактивному розпаді радію, до того, як була виконана їх хімічна ідентифікація, отримали найменування типу радій А, радій B, C радій і т. д. Хоча зараз відомо, що вони являють собою ізотопи інших хімічних елементів, їх історично сформовані назви за традицією іноді використовуються.

Походження назви[ред.ред. код]

Назва «радій» пов'язана з випромінюванням атомів Ra: лат. radiusis — промінь.

Властивості[ред.ред. код]

Атомна маса для найстійкішого ізотопу 226Ra (період напіврозпаду бл. 1620 років) — 226,0254. Сріблясто-білий метал, на повітрі набуває чорного кольору через утворення нітриду Ra3N2. При спалюванні надає червоного відтінку полум'ю.[3] Густина 5500 кг/м³; tплав 969 °C; tкип бл. 1500 °C.

Реагує з водою з утворенням сильного лугу Ra(OH)2. На повітрі легко окиснюється з утворенням RaO, сполучаючись з N, дає нітрид Ra3N2.

Всі ізотопи радію радіоактивні. Радій випромінює α, β та γ промені, в залежності від ізотопу. Всі його ізотопи легше 227Ra альфа-активні. 225Ra, 227Ra та всі більш важкі ядра зазнають тільки β-розпад. Крім того, для 5 ізотопів радію (з масовими числами 221–224 та 226) був відкритий кластерний розпад. Альфа-частинки, що випромінюються α-активними ізотопами радію (і будь-яких інших елементів), при змішуванні з легкими елементами (берилієм та ін.) викликають (α,n)-реакції на ядрах цих елементів, що призводить до емісії нейтронів[3]; це використовується для створення нейтронних джерел.

Середній вміст у земній корі 10—10% маси. Як член родини 238U, 220Ra є в усіх рудах урану (бл. 0,3 г/т). Внаслідок вимивання з уранових руд радій знаходиться в розчиненому стані у воді і входить до складу вторинних мінералів. У геології ізотопи радію 228Ra і ін. застосовують для визначення віку океанічних осадових порід і мінералів.

Радій-226 приблизно у мільйон разів радіоактивніший від природного урану з тією ж масою.[3]

Ізотопи[ред.ред. код]

Відомо 25 ізотопів радію. Ізотопи 223Ra, 224Ra, 226Ra, 228Ra зустрічаються в природі і входять до складу радіоактивних рядів. Решта ізотопів були отримані штучно. Нижче наведені властивості деяких ізотопів радію[4]:

Масове число Період напіврозпаду Тип розпаду
213 2,74(6) хв. α
219 10(3) мс α
220 17,9(14) мс α (99%)
221 28(2) с α
222 38,0(5) с α
223 (AcX) 11,43(5) дні α
224 (ThX) 3,6319(23) дні α
225 14,9(2) дні β
226 1602(7) років α
227 42,2(5) хв. β
228 (MsTh1) 5,75(3) роки β
230 93(2) хв. β

Отримання[ред.ред. код]

Радій виділяють з уранових руд хімічним методом.[1] Металевий радій отримують електролізом розчину RaCl2 на ртутному катоді.

Поширення в природі[ред.ред. код]

Радій досить рідкісний. За час з моменту його відкриття — понад століття — у всьому світі вдалося добути всього лише 1,5 кг чистого радію. Одна тонна уранової смолки, з якої подружжя Кюрі отримали радій, містить лише близько 0,0001 г радію-226. Весь природний радій є радіогенним — виникає при розпаді урану-238, урану-235 або торію-232; з чотирьох знайдених в природі найпоширенішим і найтривалішим ізотопом (період напіврозпаду — 1602 роки) є радій-226, що входить до радіоактивного ряду урану-238. У рівновазі, відношення вмісту урану-238 і радію-226 в руді дорівнює відношенню їх періодів напіврозпаду: (4,468×109 років)/(1602 роки) = 2,789 ×106. Таким чином, на кожні три мільйони атомів урану в природі можна знайти лише один атом радію або 1,02 мкг/т (кларк у земній корі).

Всі природні ізотопи радію зведено у таблиці:

Ізотоп Історична назва Родина Період напіврозпаду Тип розпаду Дочірний ізотоп (історична назва)
Радій-223 актиній Х (AcX) ряд урану-235 11,435 дні α радон-219 (актинон, An)
Радій-224 торій Х (ThX) ряд торію-232 3,66 дні α радон-220 (торон, Tn)
Радій-226 радій (Ra) ряд урану-238 1602 роки α радон-222 (радон, Rn)
Радій-228 мезоторій I (MsTh1) ряд торію-232 5,75 роки β актиній-228 (мезоторій II, MsTh2)

Геохімія радію багато в чому визначається особливостями міграції та концентрації урану, а також хімічними властивостями самого радію — активного лужноземельного металу. Серед процесів, що сприяють концентруванню радію, слід вказати насамперед на формування на невеликих глибинах геохімічних бар'єрів, в яких концентрується радій. Такими бар'єрами можуть бути, наприклад, сульфатні бар'єри в зоні окислення. Хлоридні сірководневі радієвмісні води в зоні окиснення стають сульфатними, радій осаджується з BaSO 4 та CaSO 4, де він стає практично нерозчинним постійним джерелом радону. Через високу міграційну здатність урану і здатності його до концентрування, формуються багато типів уранових рудоутворень в гідротермах, вугіллі, бітумах, вуглистих сланцях, пісковиках, торфовищах, фосфоритах, бурих залізняках, глинах з кістковими залишками риб (літофації). При спалюванні вугілля попіл і шлаки збагачуються 226Ra. Також зміст радію підвищений в фосфатних породах.

У результаті розпаду урану і торію, та вилуговування із порід нафти, що містять нафту, постійно утворюються радіонукліди радію. У статичному стані нафта знаходиться в природних пастках, обміну радієм між нафтою і водами, що її підпирають, немає (окрім зони контакту вода-нафта) і внаслідок цього є надлишок радію в нафті. При розробці родовища пластові та закачані води інтенсивно надходять у нафтові пласти, поверхня поділу вода-нафта різко збільшується і в результаті радій йде у потік вод, що фільтруються. За підвищеного вмісту сульфат-іонів розчинені у воді радій і барій осідають у вигляді радіобариту Ва(Ra)SO4, який випадає на поверхні труб, арматури, резервуарів. Типова об'ємна активність викачуваної водонафтової суміші за 226Ra і 228Ra сягає 10 Бк/л, що відповідає рідким радіоактивним відходам.

Основна маса радію знаходиться в розсіяному стані в гірських породах. Радій — хімічний аналог лужних і лужноземельних породоутворюючих елементів, що утворюють польові шпати, які складають половину маси земної кори. Калієві польові шпати — головні породоутворюючі мінерали кислих магматичних порід — гранітів, сієнітів, гранодіоритів та інших. Відомо, що граніти мають природну радіоактивність, яка трохи вища за фонову через домішки урану. Хоча кларк урану не перевищує 3 г/т, але в гранітах його вміст становить вже 25 г/т. Але якщо набагато поширеніший хімічний аналог радію — барій — входить до складу досить рідкісних калій-барієвих польових шпатів (гіалофанів), а «чистий» барієвий польовий шпат, мінерал цельзіан BaAl 2Si2O8 дуже рідкісний, то накопичення радію з утворенням радієвих польових шпатів і мінералів взагалі не відбувається через короткий період напіврозпаду радію. Радій розпадається на інертний радон, що вивільняється порами і мікротріщинами і вимивається з ґрунтовими водами. У природі іноді зустрічаються молоді радієві мінерали, що не містять уран, наприклад радіобарит і радіокальцит, при кристалізації яких з розчинів, збагачених радієм (у безпосередній близькості від легкорозчинних вторинних уранових мінералів), радій кристалізується разом з барієм і кальцієм завдяки ізоморфізму.

Застосування[ред.ред. код]

Радій застосовується як джерело альфа-частинок для приготування Ra-Be джерел нейтронів, для виготовлення світних фарб, у медицині — для радіотерапії та дефектоскопії, в техніці — для отримання радійберилієвих джерел нейтронів, як джерело гамма-випромінення. Радій також використовується в геохімії як індикатор змішування і циркуляції вод океанів.

Біологічна роль[ред.ред. код]

Радій надзвичайно радіотоксичний. В організмі він поводить себе подібно до кальцію — близько 80% радію, що потрапляє в організм, накопичується в кістковій тканині. Великі концентрації радію викликають остеопороз, самовільні переломи і злоякісні пухлини кісток та кровотворної тканини. Небезпеку несе також радон — газоподібний радіоактивний продукт розпаду радію.

Передчасна смерть Марії Кюрі сталася внаслідок хронічного отруєння радієм, тому що в той час ще не було усвідомлено небезпеку опромінення.

Див. також[ред.ред. код]

Примітки[ред.ред. код]

Література[ред.ред. код]

Посилання[ред.ред. код]