Теорема Жордана

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Ілюстрація теореми про Жорданову криву. Жорданова крива (чорним) ділить площину внутрішню (обмежену) область (блакитний) та зовнішню (необмежену) область (рожевий)

У топології, Жорданова крива — це довільна замкнена без самоперетинів крива в площині, інакше відома як проста замкнена крива.

Теорема Жордана стверджує, що кожна Жорданова крива ділить площину на дві області — внутрішню область обмежену кривою і зовнішню, що містить всі ближні і дальні зовнішні точки, причому будь-який шлях, який зв'язує точки з двох регіонів перетне цю криву в якійсь точці.

Хоча твердження теореми здається інтуїтивно очевидним, вимагається багато винахідливості, щоб довести її через елементарні логічні пояснення. Прозоріше доведення покладається математичні механізми алгебраїчної топології, і веде до узагальнення для вищих вимірів.

Теорема названа на честь Каміля Жордана, який першим довів її.

Необхідні визначення і твердження теореми[ред.ред. код]

Крива Жордана або проста замкнена крива в площині R2 це образ C як ін'єктивного неперервного відображення кола в площині, φ: S1R2. Жорданова лука в площині — образ ін'єктивного неперервного відображення замкненого інтервалу.

Інакше, Жорданова крива — це образ неперервного відображення φ: [0,1] → R2 такий, що φ(0) = φ(1) і з обмеженням, що φ в [0,1) є ін'єкцією. Перші дві умови кажуть, що C є неперервною замкненою кривою, тоді як останнє вимагає відсутності самоперетинів.

Нехай C буде Жордановою кривою в площині R2. Тоді її доповнення, R2 \ C, містить рівно дві зв'язні складові. Одна з цих складових є обмеженою множиною (внутрішня область) і інша необмежена (зовнішня область) і крива C є границею кожної зі складових.

Також, доповнення Жорданової луки в площині зв'язне.

Зовнішні посилання[ред.ред. код]