Теорія алгоритмів

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Теорія алгоритмів (англ. Theory of computation) — окремий розділ математики, що вивчає загальні властивості алгоритмів. Виникла в 30-х роках 20 століття.

Алгоритми, проте, простежуються в математиці протягом всього часу її існування. Необхідність точного математичного уточнення інтуїтивного поняття алгоритму стала неминучою після усвідомлення неможливості існування алгоритмів розв'язку багатьох масових проблем, в першу чергу пов'язаних з арифметикою та математичною логікою (проблеми істинності арифметичних формул та формул першопорядкового числення предикатів, 10-та проблема Гільберта про розв'язність діофантових рівнянь та ін.). Для доведення неіснування алгоритму треба мати його точне математичне визначення, тому після сформування поняття алгоритму як нової та окремої сутності першочерговою стала проблема знаходження адекватних формальних моделей алгоритму та дослідження їх властивостей. При цьому формальні моделі були запропоновані як для первісного поняття алгоритму, так і для похідного поняття алгоритмічно обчислюваної функції.

Історія розвитку[ред.ред. код]

Вперше поняття алгоритму з'явилося в працях Е. Бореля (1912) та Г. Вейля (1921).

Першими формальними моделями алгоритмічно обчислюваних функцій були λ-означувані функції (Алонзо Черч, 1932) та загальнорекурсивні функції (Курт Гедель, 1934). Вказані класи визначались як функції, графіки яких породжуються відповідно численням λ-конверсій та численням Ербрана-Геделя. В 1936 році Стівен Коул Кліні поширив поняття загальнорекурсивної функції на випадок часткових функцій, ввівши поняття частково рекурсивної функції, та описав клас таких функцій в чисто функціональних термінах. В 1943 році Еміль Пост запропонував модель обчислюваних функцій на основі введеного ним числення спеціального вигляду (канонічних систем).

Для формалізації самого поняття алгоритму були запропоновані точні математичні описи алгоритмічної машини та обчислюваності на ній. Першою формальною моделлю алгоритмічної машини була машина Тюрінга (Алан Тюрінг, Еміль Пост, 1936). Із пізніших моделей відзначимо нормальні алгоритми (А. Марков, І952) та регістрові машини (Д. Шепердсон, Г. Стерджіс, 1963).

В 1936 р.А. Черч та С. Кліні довели збіг класів загально-рекурсивних та λ-означуваних функцій. На основі цього факту та аналізу ідей, які привели до вказаних понять, А. Черч висунув тезу про збіг класу АОФ з класом загальнорекурсивних функцій. С. Кліні узагальнив цю тезу для випадку часткових функцій. Доведений А. Тьюрінгом в 1937 р. збіг класів частково рекурсивних функцій та функцій, обчислюваних на машинах Тюрінга, стало ще одним підтвердженням тези Черча. Пізніше такі збіги були встановлені для всіх відомих формальних моделей АОФ. Тому є всі підстави вважати, що кожна із названих вище формальних моделей адекватно уточнює інтуїтивне поняття АОФ.

Теорія алгоритмів виникла як розділ математичної логіки, поняття алгоритму тісно пов'язане з поняттям числення. Перші та найчисельніші застосування теорія алгоритмів має саме в математичній логіці. Теорія алгоритмів є теоретичним фундаментом програмування, вона має застосування всюди, де зустрічаються алгоритмічні проблеми (основи математики, теорія інформації, теорія керування, конструктивний аналіз, обчислювальна математика, теорія ймовірності, лінгвістика, економіка та ін.).

Основні поняття теорії алгоритмів[ред.ред. код]

Областю застосовності алгоритму називається сукупність тих об'єктів, до яких його можна застосувати, тобто в застосуванні до яких він дає результат. Про алгоритм U кажуть, що він: 1) «обчислює функцію f», коли його область застосування збігається з областю визначення f, і U перетворює будь-який х зі своєї області застосування в f(х); 2) «розв'язує множину A відносно множини X», коли він застосовується до будь-якого х з X, і перетворює будь-який х з X∩A на слово «так», а будь-який х з Х\А — на слово «ні»; 3) «перераховує множину B», коли його область застосування є натуральний ряд, а сукупність результатів є B. Функція наз. обчислюваною, якщо існує алгоритм, що її обчислює. Множина називається розв'язною відносно X, якщо існує алгоритм, що розв'язує її відносно X. Множина наз. перераховуваною, якщо або вона порожня, або існує перераховуючий її алгоритм.

Детальний аналіз поняття «алгоритм» виявляє, що (I) область можливих вихідних даних і область застосовності будь-якого алгоритму є перераховуваними множинами. Своєю чергою, (II) для будь-якої пари вкладених одна в другу перераховуваних множин можна підібрати алгоритм, у якого більша множина слугує областю можливих вихідних даних, а менша — областю застосовності. Мають місце такі основні теореми: (III) функція f обчислювана тоді і тільки тоді, коли перераховуваний її графік, тобто множина всіх пар вигляду <х, f(x)>. (IV) Підмножина А перераховуваної множини X тоді і тільки тоді розв'язна відносно X, коли А і X\A перераховувані. (V) Якщо А і В перераховувані, то A об'єднати B і A∩B також перераховувані. (VI) В кожній нескінченній перераховуваній множині X існує перераховувана підмножина з неперераховуваним доповненням (в силу (IV) ця перераховувана підмножина буде нерозв'язною відносно X). (VII) Для кожної нескінченної перераховуваної множини X існує обчислювана функція, визначена на підмножині цієї множини і яка не продовжувана до обчислюваної функції, визначеної на всій X. Твердження (VI) і (II) в сукупності дають приклад алгоритму з нерозв'язною областю застосовуваності.

Розв'язні і перераховувані множини складають найпростіші (і найважливіші) приклади множин, структура яких задається за допомогою тих чи тих алгоритмічних процедур. Систематичне вивчення множин конструктивних об'єктів з точки зору таких властивостей цих множин, які зв'язані з наявністю тих чи тих алгоритмів, утворює так звану алгоритмічну теорію множин.

А. т. можна розділити на дескриптивну (якісну) і метричну (кількісну). Перша досліджує алгоритми з точки зору встановлюваної ними відповідності між вихідними даними і результатами; до неї належать, зокрема, проблеми побудови алгоритму, що йому властиві ті чи ті властивості,— алгоритмічні проблеми. Друга досліджує алгоритми з точки зору складності як самих алгоритмів, так і обчислень, що ними задаються, тобто процесів послідовного перетворення конструктивних об'ектів (див. Складність алгоритму). Важливо підкреслити, що як складність алгоритмів, так і складність обчислень можуть визначатися різними способами. Розробка методів оцінки складності алгоритмів і обчислень має важливе теоретичне і практичне значення.

Застосування теорії алгоритмів[ред.ред. код]

У всіх областях математики, в яких зустрічаються алгоритмічні проблеми. Такі проблеми виникають практично в усіх розділах математики. В математичній логіці для кожної теорії формулюється проблема розв'язування множини всіх істинних або довідних тверджень цієї теорії відносно множини всіх її пропозиції (теорії поділяються на розв'язні і нерозв'язні в залежності від розв'язності або нерозв'язності вказаної проблеми); у 1936 р. А. Черч встановив нерозв'язність проблеми розв'язності для множини всіх істинних пропозицій логіки предикатів, подальші важливі результати в цьому напрямі належать А. Тарському, А. І. Мальцеву та інші. Нерозв'язні алгоритмічні проблеми зустрічаються в алгебрі (проблема тотожності для напівгруп і, зокрема, для груп; перші приклади напівгруп з нерозв'язною проблемою тотожності були винайдені в 1947 р. незалежно А. А. Марковим і Е. Постом, а приклад групи з нерозв'язною проблемою тотожності — в 1952 р. П. С. Новіковим); в топології (проблема гомеоморфії, нерозв'язність якої для важливого класу випадків була доведена в 1958 р. А. А. Марковим); в теорії чисел (проблема розв'язності діофантових рівнянь, нерозв'язність якої була встановлена в 1970 р. Ю. В. Матіясевичем) та в інших розділах математики.

А. т. тісно зв'язана: 1) з математичною логікою, оскільки в термінах алгоритмів може бути викладено одне з центральних понять математичної логіки — поняття числення (і тому, наприклад, теорема Геделя про неповноту формальних систем може бути одержана як наслідок теорем А. т.); 2) з основами математики, в яких одне з центральних місць займає проблема співвідношення конструктивного і неконструктивного (зокрема, А. т. надає апарат, необхідний для розробки конструктивного напряму в математиці); в 1965 р. А. М. Колмогоров запропонував використовувати А. т. для обґрунтування теорії інформації; 3) з кібернетикою, в якій важливе місце займає вивчення алгоритмів керування. А. т. утворює теоретичний фундамент для низки питань обчислювальної математики.

Література[ред.ред. код]

  • Вейль Г., О философии математики, пер. с нем., М.— Л., 1934;
  • Марков А. А., Нагорный Н. М., Теория алгоритмов, М., 1984;
  • Мальцев А. И., Алгоритмы и рекурсивные функции, М., 1965;
  • Роджерс X., Теория рекурсивных функций и эффективная вычислимость, пер. с англ., М., 1972;
  • Успенский В. А., Машина Поста, М., 1979; его же, Теорема Гёделя о неполноте, М., 1982;
  • Проблемы математической логики. Сложность алгоритмов и классы вычислимых функций. Сб. переводов, М., 1970;
  • Колмогоров А. Н., «Проблемы передачи информации», 1965, т. 1, № 1, с. 3—11;
  • Алгоритмы в современной математике и ее приложениях, ч. 1—2, Новосиб., 1982;
  • Успенский В. А., Семенов А. Л., «Квант», 1985, № 7, с. 9—15.
  • «Енциклопедія кібернетики», відповідальний ред. В. Глушков, 2 тт., 1973, рос. вид. 1974;

Див. також[ред.ред. код]