Трисекція кута

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Трисекція кута — задача про поділ заданого кута на три рівні частини за допомогою циркуля та лінійки. Інакше кажучи, необхідно побудувати трисектриси кута — промені, що ділять кут на три рівні частини.

Поруч із задачами про квадратуру круга та подвоєння куба є однією з класичних задач на побудову, відомих з часів стародавньої Греції.

П'єр Лоран Ванцель у 1837 році довів, що задача розв'язна тільки тоді, коли розв'язне в квадратних радикалах рівняння:

x^3-3x-2~\cos \alpha = 0.

Наприклад, трисекція здійсненна для кутів α = 360°/n при умові, що ціле n не ділиться на 3. Тим не менш, в пресі час від часу публікуються (хибні) способи здійснення трисекції кута циркулем та лінійкою.

Побудова за допомогою додаткових інструментів[ред.ред. код]

Див. також[ред.ред. код]

Література[ред.ред. код]

  • Бєлозьоров С.Е. П'ять відомих задач давнини. Історія та сучасна теорія. Ростов н/Д., 1975. (рос.)