Ферменти

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Просторова структура тріозфосфат-ізомерази (PDB 1WYI)

Ферме́нти або ензи́ми — органічні каталізатори білкової або РНК природи, які утворюються в живих організмах, здатних прискорювати перебіг хімічних реакцій в організмі. Ферменти каталізують більшість хімічних реакцій, які відбуваються в живих організмах. Вони можуть мати від одного до кількох поліпептидних ланцюгів — субодиниць. Кожен із ферментів має один або більше активних центрів, які визначають специфічність хімічної реакції, що каталізується даним ферментом. Крім активного центру деякі ферменти мають алостеричний центр, який регулює роботу активного центру. Ферментативна реакція також може регулюватися іншими молекулами, як білкової природи, так й іншими — активаторами та інгібіторами.

Біохімічні реакції відбуваються за участю ферментів за нормального тиску, температури, у слабокислому, нейтральному чи слаболужному середовищі.

Ферменти РНК-природи називаються рибозимами і вважаються первісною формою ферментів, які були замінені білковими ферментами в процесі еволюції.

Терміни «фермент» і «ензим» можна використовувати як синоніми. Але наука про ферменти називається ензимологією, а не ферментологією (ймовірно щоб не змішувати корені слів латинської і грецької мов).

Історія дослідження[ред.ред. код]

Термін «фермент» був запропонований у 17 столітті хіміком ван Гельмонтом для опису механізмів травлення. В кінці 18 — на початку 19 століття вже було відомо, що м'ясо перетравлюється шлунковим соком, а крохмаль перетворюється на цукор під дією слини. Проте механізм цих явищ був ще невідомий[1]. В 19 столітті Луї Пастер, вивчаючи перетворення вуглеводів в етиловий спирт під дією дріжджів, дійшов до висновку, що цей процес (бродіння) каталізується якоюсь «життєвою силою», що знаходиться в дріжджових клітинах.

Понад сто років тому терміни «фермент» і «ензим» відображали різні погляди Луї Пастера з одного боку та Марселена Бертло і Юстуса Лібіха з іншого в теоретичній суперечці про природу спиртового бродіння. Власне «ферментами» (від лат. fermentum — «закваска») називали «організовані ферменти» (тобто саме живі мікроорганізми), а термін «ензим» (від грец. ἐν- — «в-» і ζύμη — «дріжджі», «закваска»), запропонований 1876 року В. Кюне для «неорганізованих ферментів», що секретуються клітинами, наприклад, до шлунку (пепсин) або кишечника (трипсин, амілаза). Два роки по смерті Пастера, 1897 року, Едуард Бюхнер опублікував роботу «Спиртове бродіння без дріжджових клітин», в якій експериментально показав, що екстракт клітин дріжджів здійснює спиртове бродіння так само, як і незруйновані дріжджові клітини[2]. 1907 року за цю роботу він був удостоєний Нобелівської премії.

Функції ферментів[ред.ред. код]

Ферменти є біологічними каталізаторами, вони наявні в усіх живих клітинах і сприяють перетворенню одних речовин (субстратів) на інші (продукти). Ферменти виступають в ролі каталізаторів практично в усіх біохімічних реакціях, що відбуваються в живих організмах — ними каталізується близько 4000 окремих біореакцій[3]. Ферменти відіграють надзичайно важливу роль у всіх процесах життєдіяльності, скеровуючи та регулюючи обмін речовин організму. Для ферментів характерним є те, що їх синтез та каталітична активність контролюється на генетичному рівні, а також за участю низькомолекулярних сполук-субстратів або продуктів реакції[4].

Подібно до всіх каталізаторів, ферменти прискорюють як пряму, так і зворотну реакцію, знижуючи енергію активації процесу. Хімічна рівновага при цьому не зсувається ні в прямий, ні в зворотний бік. Відмінність ферментів від небілкових каталізаторів полягає у їхній високій специфічності — константа дисоціації деяких субстратів з білком-ферментом може досягати менш ніж 10−10 моль/л.

Ферменти широко використовуються і в народному господарстві — у харчовій, текстильній промисловості, у фармакології.

Класифікація ферментів[ред.ред. код]

Докладніше: Код КФ

За типом реакцій, що каталізують, ферменти поділяються на 6 класів згідно з ієрархічною класифікацією ферментів (КФ або EC — Enzyme Commission code). Класифікацію було запропоновано Міжнародним союзом біохімії і молекулярної біології (International Union of Biochemistry and Molecular Biology). Кожен клас містить підкласи, так що фермент описується сукупністю чотирьох чисел, розділених крапками. Наприклад, пепсин має код КФ 3.4.23.1. Перше число описує клас реакцій, що каталізує фермент:

Будучи каталізаторами, ферменти прискорюють як пряму, так і зворотну реакції, тому, наприклад, ліази здатні каталізувати і зворотну реакцію — приєднання по подвійних зв'язках. Тим не менш напрямок реакції може залучати кілька субстратів і бути таким, що зворотна реакція практично не відбувається.

Найменування ферментів[ред.ред. код]

Зазвичай фермент іменують за типом реакції, яку він каталізує, додаючи суфікс -аза до назви субстрату (наприклад лактаза — фермент, що бере участь в перетворенні лактози). Таким чином, у різних ферментів, що виконують одну функцію, буде однакова назва. Такі ферменти розрізняють по інших властивостях, наприклад, по оптимальному pH (лужна фосфатаза) або локалізації в клітині (мембранна АТФ-аза).

Кінетика ферментативної реакції[ред.ред. код]

Крива насичення хімічної реакції (рівняння Міхаеліса-Ментен), що ілюструє співвідношення між концентрацією субстрата [S] і швидкістю реакції V.

Найпростішим і найпоширенішим описом кінетики односубстратних ферментативних реакцій є рівняння Міхаеліса-Ментен.

На сьогоднішній момент описано і кілька складніших типів кінетики ферментів. Наприклад, якщо реакція вимагає кількох молекул субстрату або різних субстратів, часто реакція протікає через утворення третинного комплексу. Для дії багатьох ферментів також типове утвореня перехідних комплексів (станів), що описується «механізмом пінг-понг».

Структура і механізм дії ферментів[ред.ред. код]

Активність ферментів визначається їхньою тривимірною структурою[5].

Як і всі білки, ферменти синтезуються у вигляді лінійного ланцюжка амінокислот, який згортається певним чином. Кожна послідовність амінокислот згортається особливим чином, і молекула (білкова глобула), що утворюється, набуває унікальних властивостей. Декілька білкових ланцюжків можуть об'єднуватися у білковий комплекс. Найбільші рівні структури білків — третинна та четвертинна структури — руйнуються при нагріванні або під дією деяких хімічних речовин.

Щоб каталізувати реакцію, фермент повинен зв'язатися з одним або кількома субстратами. Білковий ланцюжок ферменту згортається таким чином, що на поверхні глобули утворюється щілина або западина, до якої приєднуються молекули субстрату. Ця область називається ділянкою (сайтом) зв'язування субстрату. Зазвичай вона збігається з активним центром ферменту або знаходиться поблизу від нього. Деякі ферменти містять також ділянки зв'язування кофакторів або іонів металів.

У деяких ферментів присутні також ділянки зв'язування малих молекул, що не беруть безпосередньої участі в реакції і часто, але не обов'язково, є субстратами або продуктами метаболічного шляху, в який входить фермент. Вони зменшують або збільшують активність ферменту, що створює можливість для зворотного зв'язку або регуляції роботи ферменту.

Для активних центрів деяких ферментів характерне явище кооперативності.

Специфічність[ред.ред. код]

Ферменти зазвичай проявляють високу специфічність по відношенню до своїх субстратів. Це досягається частковою комплементарністю форми, розподілу зарядів і гідрофобних областей на молекулі субстрату і в ділянці зв'язування субстрату на ферменті. Ферменти демонструють високий рівень стереоспецифічності (просторової специфічності), регіоселективності (специфічності орієнтації) і хемоселективності (специфічності до хімічних груп).

Модель «ключ-замок»[ред.ред. код]

Гіпотеза Кошланда про індуковану відповідність
Реалістичніша ситуація індукованої відповідності — «неправильні» субстрати дуже великі або дуже маленькі та не підходять до активного центру

У 1890 році Еміль Фішер припустив, що специфічність ферментів визначається точною відповідністю форми ферменту і субстрату [6]. Таке припущення називається моделлю «ключ-замок». Фермент з'єднується з субстратом з утворенням короткоживучого фермент-субстратного комплексу. Проте, хоча ця модель пояснює високу специфічність ферментів, вона не пояснює явища стабілізації перехідного стану, який спостерігається на практиці.

Модель індукованої відповідності[ред.ред. код]

У 1958 році американський дослідник Деніел Кошланд запропонував модифікацію моделі «ключ-замок»[7]. Ферменти, в основному, — не жорсткі, а гнучкі молекули. Активний центр ферменту може змінити конформацію після зв'язування з ним субстрату. Бічні групи амінокислот активного центру займають таке положення, яке дозволяє ферменту виконувати свою каталітичну функцію. В деяких випадках молекула субстрату також міняє конформацію після скріплення в активному центрі. На відміну від моделі «ключ-замок», модель індукованої відповідності пояснює не тільки специфічність ферментів, але і стабілізацію перехідного стану.

Модифікації[ред.ред. код]

Багато ферментів після синтезу білкового ланцюга зазнають модифікацій, без яких фермент не проявляє свою активність повною мірою; такі модифікації називаються посттрансляційними. Один з найпоширеніших типів посттрансляційних модифікацій — приєднання хімічних груп до бічних залишків поліпептидного ланцюжка. Наприклад, приєднання фосфатної групи називається фосфорилюванням, воно каталізується ферментом-кіназою. Багато ферментів еукаріот глікозовані, тобто модифіковані олігомерами вуглеводної природи.

Ще один поширений тип посттранляційних модифікацій — розщеплення поліпептідного ланцюжка. Наприклад, хімотрипсин (протеаза, що бере участь в травленні), утворюється при відщепленні поліпептидної ділянки з хімотрипсиногена. Хімотрипсиноген є неактивним попередником хімотрипсина і синтезується в підшлунковій залозі. Неактивна форма транспортується до шлунку, де перетворюється на хімотрипсин. Такий механізм необхідний для того, щоб уникнути пошкодження підшлункової залози та інших тканин до надходження ферменту в шлунок. Неактивний попередник ферменту називають також «зімогеном».

Кофактори ферментів[ред.ред. код]

Деякі ферменти виконують каталітичну функцію самі собою, без додаткових компонентів. Проте є ферменти, яким для здійснення каталізу необхідні компоненти небілкової природи. Кофактори можуть бути як неорганічними молекулами (іони металів, залізо-сірчані кластери та інші), так і органічними (наприклад, флавін або гем). Органічні кофактори, які постійно (назавжди) зв'язані з ферментом, називають також простетичними групами. Кофактори органічної природи, що здатні відділятися від ферменту, називають коферментами.

Фермент, який вимагає наявності кофактора для здійснення каталітичної активності, але не зв'язаний з ним, називається апоферментом. Апофермент в комплексі з кофактором носить назву голоферменту. Більшість кофакторів пов'язана з ферментом нековалентними, але досить міцними взаємодіями. Є і такі простетичні групи, що зв'язані з ферментом ковалентно, наприклад, тіамінпірофосфат в складі ферменту піруватдегідрогенази.

Залежність ферментних систем від генів та расологічних особливостей[ред.ред. код]

Література[ред.ред. код]

  • Волькенштейн М. В., Догонадзе Р. Р., Мадумаров А. К., Урушадзе З. Д., Харкац Ю. И. К теории ферментативного катализа.- Молекулярная биология, т. 6, вып. 3, 1972, ст. 431—439.
  • Koshland D. The Enzymes, V. I, Ch. 7. New York, Acad. Press, 1959.
  • Диксон, М. Ферменты / М. Диксон, Э. Уэбб. — В 3-х т. — Пер. с англ. — Т.1-2. — М.: Мир, 1982. — 808 с.
  • Urushadze Z. About a Real Conceptual Framework for Enzyme Catalysis.- Bull. Georgian Natl. Acad. Sci., Vol. 173, No 2, 2006, pp. 421–424.

Посилання[ред.ред. код]

  1. Williams, Henry Smith, 1863—1943. A History of Science: in Five Volumes. Volume IV: Modern Development of the Chemical and Biological Sciences
  2. N. H. Barton, D. E.G. Briggs, J. A. Eisen «Evolution», Cold Spring Harbor Laboratory Press, 2007 -P.38.- ISBN 978-0-87969-684-9
  3. Bairoch A. The ENZYME database in 2000 Nucleic Acids Res 28:304-305(2000).
  4. Сирохман І. В. Товарознавство харчових продуктів функціонального призначення: навч. С 40 пос. [для студ. вищ. навч. закл.] / І. В. Сирохман, В. М. Завгородня. — К.: Центр учбової літератури, 2009. — 544 с. — ІБВК 978-966-364-803-3
  5. Anfinsen C.B. Principles that Govern the Folding of Protein Chains Science 20 July 1973: 223—230
  6. Fischer E, «Einfluss der Configuration auf die Wirkung der Enzyme» Ber. Dt. Chem. Ges. 1894 v27, 2985—2993.
  7. Koshland DE, Application of а Theory of Enzyme Specificity to Protein Synthesis. Proc. Natl. Acad. Sci. U.S.A. 1958 Feb;44(2):98-104.


Молекула міоглобіну Це незавершена стаття про білки.
Ви можете допомогти проекту, виправивши або дописавши її.