Феромагнетики

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Схематичне зображення паралельної орієнтації магнітних моментів атомів в основному стані феромагнетика

Феромагне́тики — сильно магнітні речовини здатні намагнічуватися навіть у слабких магнітних полях. Деякі метали (залізо, нікель, кобальт, гадоліній, манган, хром та їхні сплави) з великою магнітною проникністю, що проявляють явище гістерезису; розрізняють м'які феромагнетики з малою коерцитивною силою та тверді феромагнетики з великою коерцитивною силою. Феромагнетики використовуються для виробництва постійних магнітів, осердь електромагнітів та трансформаторів.

Властивості феромагнетизму[ред.ред. код]

Найтиповішою властивістю є нелінійний характер процесу намагнічення

  • Феромагнетики сильно втягуються в область сильнішого магнітного поля.[Джерело?]
  • Магнітна сприйнятливість феромагнетиків позитивна і значно більше одиниці.[Джерело?]
  • При не дуже високих температурах феромагнетики характеризуються спонтанною намагніченістю, яка сильно змінюється під впливом зовнішніх дій[Джерело?].

Властивості феромагнетиків пов'язані з наявністю у їхній структурі груп атомів, які називаються доменами, котрі вже мають узгоджену орієнтацію елементарних магнітних полів. Орієнтація полів самих доменів, яка відбува­ється при намагнічуванні, створює власне поле речовини значно сильніше, ніж у інших магнетиків, у яких відбувається лише часткова орієнтація елеме­нтарних полів атомів речовини. Орієнтація полів доменів значною мірою зберігається і після припинення дії зовнішнього поля. Така суть залишкового намагнічування. Проте інтенсивний тепловий рух може зруйнувати цю орієн­тацію, тому за високої температури феромагнітні речовини втрачають свої магнітні властивості.

Також ферромагнетикам притаманний Ефект Барнета - намагнічування під час обертання навіть у відсутності зовнішнього магнітного поля.

Фізична природа феромагнетизму[ред.ред. код]

Феромагнетизм виникає в речовинах, у яких як наслідок обмінної взаємодії, спінам електронів вигідно орієнтуватися паралельно. В результаті такої узгодженої орієнтації спінів виникає макроскопічний магнітний момент, який може існувати навіть без зовнішнього магнітного поля. При температурі, яка перевищує певну критичну (температура Кюрі), зумовлене тепловим рухом хаотичне розупорядкування бере гору над обмінною взаємодією й феромагнетик переходить в парамагнітний стан.

Напрямок намагніченості[ред.ред. код]

Завдяки спін-орбітальній взаємодії орієнтація спінів у неізотропних середовищах не є довільною. Кристали феромагнітних речовин характеризуються так званими осями легкого намагнічення - кристалографічними напрямками, в яких орієнтується магнітний момент феромагнетика при відсутності зовнішнього магнітного поля. У слабкому магнітному полі, якщо його напрямок не збігається з віссю легкого намагнічування, індукований магнітний момент може не збігатися з напрямком магнітного поля. В сильних магнітних полях вплив осі легкого намагнічування повністю придушується.

Доменна структура[ред.ред. код]

При температурі, нижчій за температуру Кюрі, магнітні моменти електронів сусідніх атомів у феромагнетику орієнтовані паралельно, проте зазвичай ця орієнтація не поширюється на все тіло. Слабка магнітна взаємодія між окремими сумарними моментами значних областей стає на заваді їхньому зростанню. Тому феромагнетик розбивається на окремі області повної намагніченості, так звані магнітні домени. Магнітні домени можуть орієнтуватися довільним чином, тому для феромагнетика існує розмагнічений стан. У цьому стані, незважаючи на локальне намагнічення, тіло з феромагнітної речовини не є магнітом. Окрім розмагніченого стану, феромагнітне тіло може перебувати в намагніченому стані, коли переважна кількість доменів має однакову орієнтацію магнітних моментів. Намагнічений стан може зберігатися, коли зовнішнє магнітне поле відсутнє.

Представники феромагнетиків[ред.ред. код]

Серед хімічних елементів феромагнетні властивості мають перехідні елементи (див. Таблиця 1). Для 3d-металів і Ґадолінію характерна колінеарна феромагнетна атомна структура, для решти рідкісноземельних феромагнетиків — неколінеарна (спіральна й інші; див. Магнетна структура).

Таблиця 1 - Феромагнетні метали
Метали Tc Js0
Fe 1,043 1,735.2
Co 1,403 1,445
Ni 631 508.8
Gd 289 1,980
Метали Tc Js0
Tb 223 2,713
Dy 87 1,991.8
Ho 20 3,054.6
Er 19.6 1,872.6
Примітки:
Tcточка Кюрікритична температура, вище якої феромагнітні властивості зникають і речовина стає парамагнетиком; К.
Js0спонтанна намагніченість — величина намагніченості одиниці об'єму за абсолютного нуля температури; Гс.

Феромагнетні також численні металеві бінарні та складніші (багатокомпонентні) стопи та сполуки згаданих металів між собою та з іншими неферомагнетними елементами:

Таблиця 2 - Феромагнетні сполуки
Сполуки Tc
Fe3Al 743
Ni3Mn 773
FePd3 705
MnPt3 350
CrPt3 580
ZnCMn3 353
Сполуки Tc
TbN 743
DyN 773
EuO 705
MnB 350
ZrZn2 580
Au4V 353
Примітка:
Tcточка Кюрікритична температура, вище якої феромагнітні властивості зникають і речовина стає парамагнетиком; К.

Див. також[ред.ред. код]

Примітки[ред.ред. код]

Джерела[ред.ред. код]

  • І.М.Кучерук, І.Т.Горбачук, П.П.Луцик (2006). Загальний курс фізики: Навчальний посібник у 3-х т. Київ: Техніка. 
  • Вакуленко М. О. Російсько-український словник фізичної термінології / За ред. проф. О. В. Вакуленка (додаток: «Російсько-український фізичний словник»: Близько 6 000 термінів). — К., 1996. — 236 с.
  • Біленко І. І. Фізичний словник. — К.: Вища школа, Головне видав. 1979. — 336 с.
  • Гірничий енциклопедичний словник: в 3 т. / За ред. В. С. Білецького. — Донецьк: Східний видавничий дім, 2001—2004.