Хімічний зв'язок

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Хімі́чний зв'язо́к — це взаємодія між атомами, яка утримує їх у молекулі чи твердому тілі.

Хімічні зв'язки є результатом взаємодії електронів та ядер атомів і описуються квантовою механікою. В першій третині XX ст. зародилася окрема галузь хімії, предметом якої є вивчення структури молекул і кристалів за допомогою квантово-механічних розрахунків: квантова хімія. Ця галузь набула особливо інтенсивного розвитку протягом кількох останніх десятиріч.

Про розвиток поняття[ред.ред. код]

Сучасного вигляду теорія хімічного зв'язку почала набувати після того, як Г. Льюїс та В. Коссель в 1916 р. відзначили, що атоми утворюють хімічний зв'язок для того, щоб доповнити свою електронну оболонку до певної «магічної» кількості електронів. Для гідрогену це число дорівнює 2, для атомів другого періоду — 8, третього — 18. Якщо розглядати лише зовнішню електронну оболонку, то для більшості елементів це число становитиме 8 (правило октету). Таке доповнення відбувається двома шляхами:

  • повна передача одного чи більше електронів від одного атома до іншого. Утворюються різнойменно заряджені іони, які притягуються електростатичними силами (іонний зв'язок);
  • усуспільнення атомами одної чи більше електронної пари. Згодом було прояснено, що ці усуспільнені електрони накопичуються здебільшого між ядрами, які й притягуються до накопиченого негативного заряду (ковалентний зв'язок).

З точки зору фізики, концепція утворення (спільної) електронної пари була на той час революційною. Саме вона, за Льюїсом, стала центральною концепцією хімічного зв'язку.

В подальшому (Л. Полінг, 1932) кожному з елементів зіставили певну числову величину, названу електронегативністю. Вона визначає здатність атома елементу притягувати електронну пару при утворенні хімічного зв'язку. Ковалентні зв'язки дістали класифікацію на неполярні (між атомами з однаковою електронегативністю, найчастіше одного елементу в ідентичному оточенні) та полярні. Також стало зрозумілим, що іонний зв'язок є граничним випадком ковалентного полярного.

Хімічний зв'язок і квантова хімія[ред.ред. код]

Докладніше: Квантова хімія

Два основних наближених підходи до квантовомеханічного обчислення енергії молекули — метод валентних зв'язків та метод молекулярних орбіталей — доповнюють один одного в описі хімічного зв'язку.

В методі валентних зв'язків утворення хімічного зв'язку асоціюється зі спаровуванням спінів електронів, що утворюють електронні пари. Електронні пари спочатку строго локалізовані між відповідними атомами, ступінь їх зміщення чи делокалізації визначається вже в ході обчислювального процесу. Хоча математичне формулювання методу виявилось дещо неефективним для комп'ютерної реалізації, його ілюстративний апарат під назвою теорії резонансу (Л. Полінг, 1931-33) і досі є суттєвим компонентом теоретичної органічної хімії.

В методі молекулярних орбіталей утворення хімічного зв'язку асоціюється з перекриттям хвильових функцій атомів — атомних орбіталей, що веде до суперпозиції цих функцій і утворення молекулярних орбіталей. Тут електронні пари делокалізовані по всій молекулі або кристалу, і для характеристики окремих хімічних зв'язків доводиться вдаватися до того чи іншого способу локалізації орбіталей чи то електронних пар. Просторову спрямованість зв'язку певною мірою пояснює концепція гібридизації орбіталей.

Способи утворення та розриву ковалентного зв'язку[ред.ред. код]

Можливі два способи розриву ковалентного зв'язку, які різняться фінальним розподілом двох електронів, що складали спільну електронну пару, між атомами:

  • гомолітичний. Електронна пара ділиться порівну, кожен із атомів отримує по одному електрону, утворюються дві незаряджені частинки, що несуть по неспарованому електрону — вільні радикали;
  • гетеролітичний. Один із атомів отримує обидва електрони спільної електронної пари, інший — жодного. Утворюються різнойменно заряджені частинки — іони.

Коли ковалентний зв'язок утворюється між незарядженими частинками за другою схемою, атоми, які усуспільнили електронну пару, набувають (часткового) електричного заряду. Цей механізм називають донорно-акцепторним механізмом утворення зв'язку. Найпростіший приклад дає катіон амонію NH+4.

Теорія хімічної будови органічних сполук Бутлерова[ред.ред. код]

Докладніше: Теорія Бутлерова

Термін «хімічна будова» вперше ввів О. М. Бутлеров в 1861 року. Також він заклав основи теорії хімічної будови. Головні положення даної теорії наступні:

  1. Атоми в молекулах зв'язані один з одним в певній послідовності. Зміна цієї послідовності приводить до утворення нової речовини з новими властивостями.
  2. З'єднання атомів відбувається відповідно до їх валентності.
  3. Властивості речовин залежать не тільки від їх складу, а й від «хімічної будови», тобто від порядку з'єднання атомів в молекулах і характеру їх взаємного впливу. Найбільш сильно впливають один на одного атоми, які безпосередньо пов'язані між собою.

Типи хімічного зв'язку[ред.ред. код]

Серед типів хімічного зв'язку розрізняють:

В мінералах виділяють: водневий зв’язок, йонний зв’язок (полярний, гетерополярний, гетероатомний, електровалентний), ковалентний зв’язок (гомеополярний, гомоатомний, атомний), металічний (обумовлений переміщенням валентних електронів металу по всьому простору кристалічної ґратки, яка утворена позитивно зарядженими йонами), молекулярний (Ван-дер-Ваальсівський або залишковий – обумовлений дисперсійним, індукційним та орієнтаційним ефектами взаємодії молекул), донорно-акцепторний або координаційний зв’язок, змішаний (включає різні типи хімічного зв’язку, характерний для мінералів з комплексними аніонами) і проміж¬ний зв’язки (найпоширеніший – проміжний між йонним і ковалентним).

Дивіться також[ред.ред. код]

Література[ред.ред. код]

  • Химическая энциклопедия: В 5 т./ Гл. ред. Н. С. Зефиров. Т. 5: Триптофан — Ятрохимия. — М.: Большая Рос. энцикл., 1998. — 783 с.: ил., табл. — Библиогр. в конце ст. — ISBN 5-85270-310-9. (рос.)
  • Глосарій термінів з хімії // Й.Опейда, О.Швайка. Ін-т фізико-органічної хімії та вуглехімії ім. Л. М. Литвиненка НАН України, Донецький національний університет — Донецьк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
  • Ч. Коулсон. Валентность / Пер. с англ. под ред. Соколова Н.Д. — М.: Мир, 1965. — 426 с. (рос.)


Реторта Це незавершена стаття з хімії.
Ви можете допомогти проекту, виправивши або дописавши її.