Хі-квадрат тест

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Хі-квадрат тест, також має назви критерій хі-квадрат або χ ² тест, - це будь-який метод статистичної оцінки гіпотез, в яких вибірковий розподіл статистичного тесту є розподіл хі-квадрат, коли нульова гіпотеза вірна, або будь-які, в яких це так асимптотично, тобто що вибірковий розподіл (якщо нульова гіпотеза вірна) можуть бути зроблені для апроксимації розподілу хі-квадрат як завгодно близько, роблячи розмір вибірки досить великим.

Деякі приклади[ред.ред. код]

Деякі приклади хі-квадрат тестів, де розподіл хі-квадрат тільки частково справедливий:

  • тест Хі-квадрат Пірсона, також відомий як добре наближення хі-квадрату, або тест хі-квадрат за незалежність. Коли критерій хі-квадрат згадується без будь яких модифікаторів або без інших контекстів виключення, цей тест зазвичай призначається для точного критерію використовувати замість χ ² , дивись точний критерій Фішера.
  • поправка Йейтса для неперервності, також відомий як тест хі-квадрат Йєтса.
  • Кокран-Мантель-Хенсзель критерій хі-квадрат.
  • Тест Макнемера, використовується в деяких визначених 2 × 2 таблиць із поєднанням
  • тест Тьюки адитивності
  • тест портмане в аналізі часового ряду, перевіряє на наявність автокореляції
  • відношення ймовірності перевіряє в загальному статистичному моделюванні чи є докази необхідності переміститись з простої моделі в більш складну (де проста модель вкладена в складнішу)

Один випадок, коли розподіл досліджуваної статистичної величини є точно розподілом хі-квадрат, є тестом, що дисперсія нормально розподіленої множини має дане значення на основі вибіркової дисперсії. Такий тест застосовується рідко на практиці, оскільки значення дисперсії для перевірки рідко є відомими точно.

Хі-квадрат для дисперсії в одній нормальній множині[ред.ред. код]

Якщо зразок розміру береться з множини, що має нормальний розподіл, тобто відомий результат (див. розподілення вибіркової дисперсії), яка дозволяє тесту бути зробленим на основі того, чи має елемент множини попередньо визначене значення. Наприклад, виробничий процес був у стабільному стані протягом тривалого періоду, що дозволяло визначенню дисперсії по суті без помилок. Припустимо, що один з варіантів процесу проходить випробування, що призводить до невеликій вибірці найменувань продукції, зміна яких має бути протестована. Тестова статистична величина T в даному випадку може бути встановлена як сума квадратів середнє значення вибірки, поділене на номінальну вартість для дисперсії. Тоді T має розподіл хі-квадрат з ступенями свободи. Наприклад, якщо розмір вибірки 21, область для T на рівні значимості 5% - це інтервал 9.59 до 34.17.

Дивіться також[ред.ред. код]

Зовнішні джерела[ред.ред. код]

  1. [3]
  2. [4]

Категорія:Непараметрична статистика