Гіпотеза плоских перерізів

Матеріал з Вікіпедії — вільної енциклопедії.
Версія від 05:54, 14 листопада 2013, створена Shkod (обговорення | внесок) (Створена сторінка: '''Гіпо́теза пло́ских пере́різів''' або '''гіпо́теза Берну́ллі''': поперечні перерізи брус...)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Гіпо́теза пло́ских пере́різів або гіпо́теза Берну́ллі: поперечні перерізи бруса, плоскі до прикладання навантаження, залишаються плоскими і при дії навантаження.

В основі гіпотези плоских перерізів лежить припущення, що і всередині стрижня деформації мають такий же характер, як і на поверхні. Отже, перерізи, плоскі і нормальні до осі стрижня до деформації, залишаються плоскими і нормальними до його осі і після деформації.

Гіпотеза плоских перерізів (гіпотеза Бернуллі — за іменем вченого Якоба Бернуллі, який першим експериментально дослідив і сформулював її у 1705 році) є однією з фундаментальних гіпотез, прийняттям якої опір матеріалів відрізняється від теорій пружності та пластичності.

Для стрижнів

Гіпотеза плоских перерізів у випадку розтягування-стискання стверджує, що плоскі перерізи, які є нормальними до осі стрижня до деформації, залишаються плоскими і нормальними до осі стрижня після деформації.

Виходячи з цієї гіпотези, при розтягненні стрижня поздовжні і поперечні риски, що нанесені на його поверхні до деформації, залишаються прямолінійними і взаємно перпендикулярними, змінюються лише відстані між ними (між поперечними рисками вони зростають, а між поздовжніми — зменшуються).

Зазвичай дане традиційне формулювання доповнюється (явно чи неявно) наступним уточненням: в процесі деформування відстань між точками поперечного перерізу не змінюється.

Для валів

Відповідно до гіпотези, при крученні поперечні перерізи вала не викривляються, а повертаються навколо осі вала як жорсткі диски, що відображається у наступних твердженнях:

  • перерізи вала є плоскими і перпендикулярними до його осі до деформації залишаються такими ж і після деформації;
  • відстань між плоскими перерізами в результаті деформації кручення не змінюється;
  • радіуси кіл у перерізах залишаються прямими лініями.

Для балок

Гіпотезу плоских перерізів при згині можна пояснити на прикладі: нанесемо на бічній поверхні недеформованої балки сітку, що складається з поздовжніх і поперечних (перпендикулярних до осі) прямих ліній. В результаті згину балки поздовжні лінії набудуть криволінійної форми, а поперечні практично залишаться прямими і перпендикулярними до вигнутої осі балки.

Формулювання: поперечні перерізи, що були плоскими і перпендикулярними до осі балки до деформації, залишаються плоскими і перпендикулярними до зігнутої осі після її деформування.

Ця обставина свідчить, що при згині виконується гіпотеза плоских перерізів, як при розтягуванні і крученні.

Крім гіпотези плоских перерізів приймається допущення: поздовжні волокна балки при її згинанні не натискають одне на одного.

Узагальнення

З логічної точки зору ця гіпотеза має на увазі накладення на матеріал специфічних внутрішніх зв'язків, що забезпечили б абсолютну твердість перерізів, а також незмінність кута між віссю бруса, що може зазнавати деформації і його поперечними перерізами. У зв'язку з цим напруження, що виникають під впливом сил реакції вищезгаданих внутрішніх зв'язків накладаються на ті напруження, що виникають від деформації матеріалу, з якого виготовлено брус. А визначити їх є можливим виключно з рівнянь руху або ж рівноваги для певних елементарних об'ємів бруса.

Джерела