Відмінності між версіями «Континуанта (математика)»

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][перевірена версія]
Рядок 25: Рядок 25:
 
* <math>K_n(1,\;\ldots,\;1) = F_{n+1}</math>, це (''n''+1)-ше [[число Фібоначчі]].
 
* <math>K_n(1,\;\ldots,\;1) = F_{n+1}</math>, це (''n''+1)-ше [[число Фібоначчі]].
 
* <math>\frac{K_n(x_1,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = x_1 + \frac{K_{n-2}(x_3,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)}.</math>
 
* <math>\frac{K_n(x_1,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = x_1 + \frac{K_{n-2}(x_3,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)}.</math>
* Співвідношення континуант представляє (підхідні дроби) [[ланцюговий дріб|неперервного дробу]] так:
+
* Співвідношення континуант представляє (підхідні дроби) [[ланцюговий дріб|неперервний дріб]] так:
 
*: <math>\frac{K_n(x_1,\;\ldots,x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = [x_1;\;x_2,\;\ldots,\;x_n] = x_1 + \frac{1}{\displaystyle{x_2 + \frac{1}{x_3 + \ldots}}}.</math>
 
*: <math>\frac{K_n(x_1,\;\ldots,x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = [x_1;\;x_2,\;\ldots,\;x_n] = x_1 + \frac{1}{\displaystyle{x_2 + \frac{1}{x_3 + \ldots}}}.</math>
 
* Виконується така матрична тотожність:
 
* Виконується така матрична тотожність:

Версія за 17:10, 24 жовтня 2016

В алгебрі, континуанта —це многочлен, що представляє визначник тридіагональної матриці і застосовується в узагальнених неперервних дробах.

Означення

nконтинуанта рекурсивно визначається так

Властивості

  • Континуанту можна обчислити взявши суму всіх можливих добутків x1,...,xn, в яких вилучена будь-яка кількість неперетинних пар послідовних елементів (Правило Ейлера). Наприклад,
З цього випливає, що континуанти інваріантні щодо обернення порядку невідомих:
  • Континуанту можна обчислити як визначник тридіагональної матриці:
  • , це (n+1)-ше число Фібоначчі.
  • Співвідношення континуант представляє (підхідні дроби) неперервний дріб так:
  • Виконується така матрична тотожність:
    .
    • Для визначників це означає, що
    • і також

Узагальнення

Узагальнене визначення визначає континуанту за допомогою трьох послідовностей a, b і c, так що K(n) є многочленом від a1,...,an, b1,...,bn−1 і c1,...,cn−1. Тут рекурентне співвідношення набуває вигляду

Оскільки br і cr входять в K лише як добуток brcr, то без втрати загальності можна вважати, що всі br рівні 1.

Узагальнена котинуанта є визначником тридіагональної матриці

References

  • Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications. с. 516–525. 
  • Cusick, Thomas W.; Flahive, Mary E. (1989). The Markoff and Lagrange Spectra. Mathematical Surveys and Monographs 30. Providence, RI: American Mathematical Society. с. 89. ISBN 0-8218-1531-8. Zbl 0685.10023. 
  • George Chrystal (1999). Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1. American Mathematical Society. с. 500. ISBN 0-8218-1649-7.