Незвідний елемент

Матеріал з Вікіпедії — вільної енциклопедії.
Версія від 15:15, 25 листопада 2016, створена Igor Yalovecky (обговорення | внесок) (→‎Приклади)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Незвідним елементом в області R називається елемент, що не є оборотним в R, і з рівності p=bc, випливає, що або b, або c є оборотним елементом.

Якщо p≠0 — простий елемент, тобто (p)простий ідеал, то p є незвідним. Справді, тоді якщо p=ab маємо через простоту (p) що, наприклад a ∈(p). Тоді маємо: a=px для деякого x, значить a=abx і bx=1, тобто b є оборотним. Зворотне в загальному випадку невірно, хоча виконується для довільного факторіального кільця.

Приклади[ред. | ред. код]

  • Прості числа є незвідними елементами кільця цілих чисел.
  • Незвідні многочлени є незвідними елементами кільця многочленів.
  • В кільці квадратичних цілих чисел, число 3 є незвідним у цьому кільці немає елемента норма якого дорівнює 3 і оскільки то один з дільників має бути але не є простим оскільки число 9 може бути записане як .

Література[ред. | ред. код]