Непарна функція

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Приклад непарної функції: f(x) = x3.

Непа́рна фу́нкція — функція , визначена на симетричній (відносно початку координат) множині , яка змінює знак при зміні знаку аргумента, тобто:

Графік непарної функції центрально-симетричний відносно початку координат.

Властивості[ред. | ред. код]

  • Сума і різниця непарних функцій буде непарною функцією
  • Композиція непарних функцій буде непарною функцією
  • Добуток і частка непарних функцій буде парною функцією
  • Довільну функцію можна розкласти в суму парної та непарної функцій

Приклади[ред. | ред. код]

  • (тільки непарні степені)

Алгоритм дослідження функції на непарність[ред. | ред. код]

Дослідити функцію на непарність — з'ясувати, чи є задана функція непарною.

Алгоритм дослідження функції на непарність:

  • Скласти вираз , для цього у функції замінити аргумент на ;
  • Порівняти і , якщо , то функція - непарна.

Див. також[ред. | ред. код]

Джерела[ред. | ред. код]