Розподіл ймовірностей

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Дискретний розподіл ймовірностей для суми двох гральних кісток

В математиці та статистиці розпо́діл ймові́рностей (який має математично описуватися функцією розподілу ймовірностей), ставить у відповідність кожному інтервалу ймовірність таким чином, що аксіоми ймовірностей виконуються. Математичною мовою, функція розподілу ймовірностей є ймовірнісною мірою, визначеною на борелівській алгебрі інтервалів.

Розподіл імовірностей є окремим випадком загальнішого означення ймовірнісної міри, яка є функцією, що ставить у відповідність вимірним множинам з вимірного простору ймовірності за аксіомами Колмогорова.

Згідно з означенням П. Лапласа, мірою ймовірності є дріб, чисельником якого є число сприятливих подій, а знаменником — число всіх можливих випадків.[1]

Також деякі вчені означають розподіл як ймовірнісну міру, індуковану випадковою величиною X на деякому інтервалі — ймовірність множини B є . Однак у цій статті розглядаємо лише ймовірнісні міри на множині інтервалів числової прямої.

Строге визначення[ред. | ред. код]

Будь-яка випадкова величина задається своїм розподілом імовірностей. Якщо X є випадковою величиною, його розподіл ставить у відповідність відрізкам [a, b] ймовірність Pr[aXb], тобто ймовірність, що випадкова величина X прийме значення з інтервалу [a, b]. Розподіл ймовірностей величини X може бути однозначно описаний своєю функцією розподілу ймовірностей F(x), яка визначається, як

для усіх x з R.

Розподіл є дискретним, якщо його функція розподілу складається зі скінченної послідовності уступів, що фактично означає, що величина X є дискретною випадковою величиною: вона може набувати значення лише із визначеної скінченної (або зліченної) множини. Дехто визначає неперервний розподіл як такий, що його функція розподілу є неперервною функцією, що означає, що вона відповідає такій випадковій величині X для якої Pr[ X = x ] = 0 для усіх x в R. Інше визначення використовує термін неперервна функція розподілу лише для абсолютно неперервного розподілу. В термінах функції щільності, на множині дійсних чисел визначено невід'ємний інтеграл Лебега функції f, що задовольняє умові

для всіх a та b. Очевидно, для дискретних розподілів функція щільності не визначена; хоча треба відмітити, що для деяких неперервних розподілів, як драбина Кантора функція щільності також не визначена.

Дискретна функція розподілу виражається як —

для .

Де є ймовірністю елементарної події.

  • Розподіл імовірностей суми двох незалежних випадкових величин є згорткою їх функцій щільності.
  • Розподіл імовірностей різниці двох незалежних випадкових величин є крос-кореляцією їх функцій щільності.

Список важливих ймовірнісних розподілів[ред. | ред. код]

Розподіли імовірностей як правило поділяють на два класи. Дискретний розподіл імовірностей (що застосовується у випадках коли множина можливих подій є дискретною, як наприклад підкидання монети чи гральної кістки) можна описати дискретним набором ймовірностей можливих подій, що називається функцією маси імовірностей. З іншого боку, неперервний розподіл імовірностей (що застосовується у випадках коли можливі події можуть приймати значення із неперервного діапазону (наприклад, дійсних чисел), як наприклад, температура в конкретний час дня) зазвичай описують за допомогою функції густини імовірностей (де імовірність виникнення кожного окремого результату фактично дорівнює 0). Самим загальнопоширеним неперервним розподілом імовірностей є нормальний розподіл. Більш складні експерименти, такі що пов'язані із випадковими процесами визначеними у неперервному часі[en], можуть потребувати використання більш загальних ймовірнісних мір[en].

Розподіл імовірностей, простором вибірки якого є множина дійсних чисел, називається одноваріативним[en], а розподіл простором вибірки якого є векторний простір називається спільним розподілом. Одноваріативний розподіл визначає імовірності однієї окремої випадкової величини яка приймає різні значення; багатоваріативний розподіл (спільний розподіл) визначає ймовірності вектора випадкової величини[en] – списку двох або більшої кількості випадкових величин – враховуючи різні комбінації значень. До важливих і добревідомих одноваріативних розподілів імовірностей відносяться біноміальний розподіл, гіпергеометричний розподіл, і нормальний розподіл. Багатовимірний нормальний розподіл це найвідоміший спільний розподіл.

Деякі ймовірнісні розподіли є дуже важливим в теорії та практиці, тож їм дали свої назви:

Дискретні розподіли[ред. | ред. код]

Зі скінченною множиною подій[ред. | ред. код]

З нескінченою множиною подій[ред. | ред. код]

Неперервні розподіли[ред. | ред. код]

Визначені на замкненому інтервалі[ред. | ред. код]

Визначений на півінтервалі [0,∞)[ред. | ред. код]

Визначені на всій дійсній осі[ред. | ред. код]

Згортка розподілів[ред. | ред. код]

Для будь-якої множини незалежних випадкових величин функція щільності їх загального розподілу є добутком їх функцій щільності.

Ймовірносний простір розмірності більше 1[ред. | ред. код]

Матричні розподіли[ред. | ред. код]

Приклади розподілів[ред. | ред. код]

Клас розподілів типу зсув масштабу[ред. | ред. код]

Кілька нормальних розподілів з одного класу

Клас розподілів називається класом розподілу типу зсув-масштабу, якщо

Сама функція називається базовою для цього класу розподілів.

Або, якщо говорити звичайною мовою, це набір розподілів, графіки яких однакові, просто зсунуті чи масштабовані вздовж осі .

Наприклад, всі Нормальні розподіли утворюють клас розподілів типу зсув-масштабу.

Джерела інформації[ред. | ред. код]

  1. Лаплас. Опыт философии теории вероятностей / В книге: Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю. В. Прохоров. — Большая Российская энциклопедия. — 1999. — С. 834 — 869.

Див. також[ред. | ред. код]

Посилання[ред. | ред. код]