Теоретико-доказова семантика: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Немає опису редагування
Немає опису редагування
Мітки: Візуальний редактор Редагування з мобільного пристрою Редагування через мобільну версію
Рядок 1: Рядок 1:
<nowiki>'''</nowiki>Теоретико-доказова семантика<nowiki>'''</nowiki> - це підхід до [[семантика логіки|[[семантики логіки]]<nowiki>]], яка намагається знайти сенс пропозицій і </nowiki>[[логічних зв'язок|<nowiki>[[логічний зв'язок|логічних зв'язок]]</nowiki>]] не в термінах [[[[інтерпретацій|інтерпретація|інтерпретацій]]<nowiki>]], як в підходах до семантиці в </nowiki>[[Тарський]], а в ролі, яку судження або логічна зв'язність грає в <nowiki>[[висновок|системі висновку]]</nowiki>.
<nowiki>'''</nowiki>Теоретико-доказова семантика<nowiki>'''</nowiki> - це підхід до [[семантика логіки|[[семантики логіки]]<nowiki>]], яка намагається знайти сенс пропозицій і </nowiki>[[Логічних зв'язок|<nowiki>[[логічний зв'язок|логічних зв'язок]]</nowiki>]] не в термінах [[[[Інтерпретацій|інтерпретація|інтерпретацій]]<nowiki>]], як в підходах до семантиці в </nowiki>[[Тарський]], а в ролі, яку судження або логічна зв'язність грає в <nowiki>[[висновок|системі висновку]]</nowiki>.


<nowiki>[[Герхард Гентца]]</nowiki> є засновником теоретико-теоретичної семантики, надаючи йому офіційну основу в своєму звіті про усунення <nowiki>[[виключення]]</nowiki> для <nowiki>[[секвенційне обчислення|секвенційного обчислення]]</nowiki> і деякі провокаційні філософські зауваження про те, як визначити сенс логічних зв'язок в правилах їх введення в межах <nowiki>[[Дедукція|природного дедукції]]</nowiki>. З тих пір історія теоретико-семантичної теорії доказів була присвячена вивченню наслідків цих ідей.
<nowiki>[[Герхард Гентца]]</nowiki> є засновником теоретико-теоретичної семантики, надаючи йому офіційну основу в своєму звіті про усунення <nowiki>[[виключення]]</nowiki> для <nowiki>[[секвенційне обчислення|секвенційного обчислення]]</nowiki> і деякі провокаційні філософські зауваження про те, як визначити сенс логічних зв'язок в правилах їх введення в межах <nowiki>[[Дедукція|природного дедукції]]</nowiki>. З тих пір історія теоретико-семантичної теорії доказів була присвячена вивченню наслідків цих ідей.

Версія за 11:15, 28 травня 2017

'''Теоретико-доказова семантика''' - це підхід до [[семантика логіки|семантики логіки]], яка намагається знайти сенс пропозицій і [[логічний зв'язок|логічних зв'язок]] не в термінах [[інтерпретація|інтерпретацій]], як в підходах до семантиці в Тарський, а в ролі, яку судження або логічна зв'язність грає в [[висновок|системі висновку]].

[[Герхард Гентца]] є засновником теоретико-теоретичної семантики, надаючи йому офіційну основу в своєму звіті про усунення [[виключення]] для [[секвенційне обчислення|секвенційного обчислення]] і деякі провокаційні філософські зауваження про те, як визначити сенс логічних зв'язок в правилах їх введення в межах [[Дедукція|природного дедукції]]. З тих пір історія теоретико-семантичної теорії доказів була присвячена вивченню наслідків цих ідей.

[[Даг Правітц]] поширив поняття Генцен на [[аналітичний доказ]], [[дедукція|природну дедукцію]] і припустив, що значення доказу в природному виведення можна розуміти як його нормальний вигляд. Ця ідея лежить в основі [[Ізоморфізм|ізоморфізму Керрі-Говарда]] і [[теорія типів|інтуїтивної теорії типів]]. Його [[інверсія|принцип інверсії]] лежить в основі більшості сучасних звітів про теоретико-семантику доказу.

[[Майкл Дамм]] представив дуже фундаментальну ідею [[логічна гармонія|логічної гармонії]], спираючись на пропозицію [[Нуель Белнап]]. Коротше кажучи, мова, яка, як розуміється, пов'язаний з певними шаблонами виведення, має логічну гармонію, якщо завжди можна відновити аналітичні докази від довільних демонстрацій, що можна показати для секвенційного обчислення за допомогою теорем виключення вирізу і Для природного виведення за допомогою теорем нормування. Мова, в якому відсутня логічна гармонія, буде страждати від наявності некогерентних форм виведення: це, ймовірно, буде непослідовним.