Алгебраїчна незалежність

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Алгебраїчна незалежність — поняття теорії розширень полів. Нехай - деяке розширення поля . Елементи називаються алгебраїчно незалежними, якщо для довільного не тотожно рівного нулю многочлена з коефіцієнтами з поля

.

У іншому випадку елементи називаються алгебраїчно залежними. Нескінченна множина елементів називається алгебраїчно незалежною, якщо незалежною є кожна її скінченна підмножина, і залежною в іншому випадку. Визначення алгебраїчної незалежності можливо поширити на випадок, коли кільце і — його підкільце.

Приклад[ред.ред. код]

Підмножина поля дійсних чисел не є алгебраїчно незалежною над полем , оскільки многочлен є нетривіальним з раціональними коефіцієнтами і .

Література[ред.ред. код]

Посилання[ред.ред. код]