Алгоритм Рабіна — Карпа

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Алгоритм Рабіна — Карпа
КласПошук рядка
Найгірша швидкодіяO(nm)
Найкраща швидкодіяO(n+m)
Середня швидкодіяO(n+m)
Просторова складність у найгіршому випадкуO(p)

Алгоритм Рабіна-Карпа — алгоритм пошуку рядка запропонований Рабіном і Карпом[1]. Алгоритм показує високу продуктивність на практиці, а також дозволяє узагальнення на інші споріднені задачі.

Ідея алгоритму полягає в заміні текстових рядків числами, порівняння яких можна виконувати значно швидше.

Ідея алгоритму

[ред. | ред. код]

Для простоти припустимо, що алфавіт складається з десяткових цифр Σ = {0,1,…,9}. (В загальному випадку можна припустити, що кожний символ — це цифра в системі числення з основою d, де d = |Σ|.) Після цього, рядок з k символів, можна розглядати як число довжини k. Тобто символьний рядок «12345» відповідає числу 12345.

Для заданого зразка P[1..m] позначимо через p відповідне йому десяткове значення. Аналогічно, для заданого тексту T[1..n] позначимо через десяткове значення підрядка T[s+1..s+m] довжини m при s = 0,1,…,n-m. Очевидно, що тоді і тільки тоді, коли T[s+1..s+m]=P[1..m]; таким чином, s — допустимий зсув тоді і тільки тоді, коли .

Якщо значення p можна обчислити за Θ(m) а значення за сумарний час Θ(n-m+1), то усі допустимі зсуви можна було б знайти за час Θ(m) + Θ(n-m+1) = Θ(n) шляхом порівняння p з кожним з можливих . (Покищо до уваги не береться той факт, що величини p і можуть виявитись дуже великими.)

З допомогою схеми Горнера величину p можна обчислити за час Θ(m):

Значення можна обчислити з масиву T[1..n] аналогічним способом за час Θ(m). В той же час, знаючи величину величину можна обчислити за фіксований час:

    (1)

Наприклад, якщо m = 5 і , то потрібно видалити цифру у старшому розряді T[s+1] = 3 і додати цифру у молодший розряд (припустимо, T[s+5+1]=2). В результаті отримуємо .

Отже, всі можна обчислити за час Θ(n).

В цій процедурі пошуку наявна складність, пов'язана з тим, що значення p і можуть виявитись занадто великими і з ними буде незручно працювати. Якщо зразок P складається з m цифр, то припущення про те, що арифметичні операції з числом p (до якого входить m цифр) займають «фіксований час», не відповідає дійсності. Ця проблема має просте вирішення: обчислення значень p і за модулем деякого числа q. Оскільки обчислення проводяться рекурентно, то знаходження p можна виконати за Θ(m) а всіх відповідно за Θ(n). Значення q звичайно обирають таким, щоб величина dq не перевищувала максимальну величину комп'ютерного слова.

Тоді, співвідношення (1) приймає вигляд:

    (2)

де — значення, що приймає цифра «1» поставлена в старший розряд m-значного текстового рядка.

Робота по модулю q має свої недоліки, оскільки з не випливає, що . З іншого боку, якщо , то обов'язково виконується співвідношення і можна зробити висновок, що зсув s неприпустимий. Таким чином, співвідношення можна використовувати як швидкий евристичний тест, що дозволяє виключити із розгляду деякі неприпустимі зсуви. Усі зсуви, для яких співвідношення виконується, треба додатково перевірити. Якщо q достатньо велике, то можна сподіватися, що хибні зсуви будуть зустрічатися досить рідко і час додаткової перевірки буде малим.

Опис алгоритму

[ред. | ред. код]

Алгоритм полягає в наступному:

  1. обчислити число p;
  2. обчислити всі ;
  3. Для тих s для яких , виконати перевірку P[1..m] = T[s+1..s+m].

Псевдокод алгоритму

[ред. | ред. код]

 1 
 2 
 3 
 4 
 5 
 6 for  to  //Попередня обробка
 7     do 
 8        
 9 for  to  //Перевірка
10     do if 
11           then if 
12                   then print «Зразок знайдено зі зсувом» s
13        if 
14           then 

Аналіз

[ред. | ред. код]

У процедурі Rabin_Karp_Matcher на попередню обробку витрачається час а час пошуку у найгіршому випадку дорівнює Однак, в багатьох практичних задачах очікувана кількість допустимих зсувів є невеликою, тоді час роботи алгоритму коли знайдено c зсувів є плюс час необхідний для перевірки хибних збігів. Ми можемо побудувати евристичний аналіз на припущені, що взяття значень по модулю q діє як випадкове відображення з множини усіх допустимих рядків у Тоді ми можемо очікувати, що кількість помилкових збігів є оскільки ми можемо оцінити шанс того, що будь-який буде тотожним по модулю як

Зноски

[ред. | ред. код]
  1. Richard M. Karp and Michael O. Rabin. Efficient Randomized Pattern-Matching Algorithms. Technical Report TR-31-81, Aiken Computation Laboratory, Havard University, 1981.

Джерела

[ред. | ред. код]
  • Karp and Rabin's original paper: Karp, Richard M.; Rabin, Michael O. (March 1987). «Efficient randomized pattern-matching algorithms». IBM Journal of Research and Development 31 (2), 249-260.
  • Thimas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clifford Stein. Introduction to Algorithms (2nd ed.) The MIT Press. ISBN 0-07-013151-1

Див. також

[ред. | ред. код]