Алгоритм сортування

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Алгоритм сортування — це алгоритм, що розв'язує задачу сортування, тобто здійснює впорядкування лінійного списку (масиву) елементів.

Термін сортування (англ. sorting) означає розділення елементів за певними ознаками (сортами) і не дуже точно описує поставлене завдання. Точнішою була б назва впорядкування (англ. ordering), але через перевантаженість слова «порядок» (англ. order) різними значеннями, в цьому завданні ним не скористалися.

Постановка задачі[ред.ред. код]

Вхід алгоритму: послідовність з чисел

Вихід алгоритму: перестановка вхідної послідовності таким чином, що ( — перестановка послідовності чисел ).

Вхідна послідовність найчастіше представляється у вигляді n-елементного масиву, хоча може мати й інше представлення, наприклад, у вигляді зв'язного списку.

Вхідна послідовність: (5, 6 ,1 ,8 ,5 ,7, 4)
Вихідна послідовність: (1, 4, 5, 5, 6, 7, 8)

Структури даних[ред.ред. код]

Докладніше: Структура даних

На практиці елементи, що впорядковуються, рідко бувають просто числами. Набагато частіше, кожен такий елемент є записом (англ. record). В кожному записі є ключ (англ. key), по якому власне і здійснюється впорядкування, в той же час є й інша супутня інформація. Алгоритм сортування на практиці має бути реалізований так, щоб разом з ключами переміщати і супутню інформацію. Якщо кожен запис містить супутню інформацію великого обсягу, то з метою звести до мінімуму переписування великих обсягів інформації, впорядкування відбувається не у самому масиві елементів, а в масиві вказівників на елементи.

Сам метод сортування не залежить від того, чи впорядковуються тільки числа, чи також і супутня інформація, тому при описі алгоритмів для простоти припускають, що елементи є числами.

Класифікація алгоритмів сортування[ред.ред. код]

Для алгоритму сортування (як і для будь-якого іншого сучасного алгоритму) основними характеристиками є:

  • Час необхідний на впорядкування n-елементного масиву. Для значної кількості алгоритмів середній і найгірший час впорядкування n-елементного масиву є , це пов'язано з тим, що в них передбачені перестановки елементів, що стоять поряд (різниця між індексами елементів не перевищує деякого заданого числа). Такі алгоритми зазвичай є стабільними, хоча і не ефективними для великих масивів. Інший клас алгоритмів здійснює впорядкування за час . В цих алгоритмах використовується можливість обміну елементів, що знаходяться на будь-якій відстані один від одного.
  • Необхідність додаткової пам'яті для сортування. Зазвичай необхідно O(1) пам'яті.
  • Стабільність (англ. Stability) — стабільне сортування не змінює взаємного розташування елементів з однаковими ключами.

Теорема про найкращий час сортування[ред.ред. код]

Якщо алгоритм сортування в своїй роботі спирається тільки на операції порівняння двох об'єктів (≤) і не враховує жодної додаткової інформації про елементи, то він не може впорядкувати масив елементів швидше ніж за в найгіршому випадку.

Доведення[ред.ред. код]

На кожному кроці алгоритм проводить одне порівняння, результатом якого є один з двох варіантів:

В залежності від результату порівняння алгоритм буде робити подальші дії. Отже, всю роботу алгоритму можна представити у вигляді бінарного дерева в листах якого лежать можливі перестановки вхідного масиву.

Отже, дерево має листів, а висота дерева є . Час роботи в найгіршому випадку пропорційний висоті дерева:


Ці швидкі алгоритми використовуються в реальних задачах. Проте більшість з них нестабільні. Стабільні алгоритми, що працюють за час , потребують додаткової пам'яті.

Відомий стабільний алгоритм сортування, що не вимагає додаткової пам'яті, працює за час

Ще один клас алгоритмів використовує в своїй роботі деяку додаткову інформацію про елементи, що впорядковуються (наприклад, те що вони є різними числами в деякому діапазоні). Завдяки цьому, вони працюють за час .

Відомі алгоритми сортування[ред.ред. код]

За час

  • Сортування вибором — ( англ.  Selection sort ) — пошук найменшого або найбільшого елемента і приміщення його в початок або кінець впорядкованого списку.
  • Сортування вставкою — (англ. Insertion sort) — Визначаємо місце де поточний елемент повинен знаходитися в упорядкованому списку, і вставляємо його туди.
  • Сортування обміном (сортування бульбашкою ( англ.  Bubble sort )) — для кожної пари індексів проводиться обмін, якщо елементи розташовані не по порядку.
  • Сортування методом бінарної вставки

За час

За час з використанням додаткової інформації про елементи

За час

За час

Література[ред.ред. код]

  • Thimas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clifford Stein. Introduction to Algorithms (2nd ed.) The MIT Press. ISBN 0-07-013151-1.

Див. також[ред.ред. код]

Посилання[ред.ред. код]