Архітектура комп'ютера

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Конвеєрна реалізація архітектури MIPS. Конвеєрність[en] є ключовою концепцією в архітектурі комп'ютера.

У комп'ютерній інженерії і інформатиці,[1] архітектура комп'ютера (англ. Computer architecture ) — це набір дисциплін, які описують функціональність, організацію та реалізацію комп'ютерних систем. Деякі визначення архітектури є описами можливостей та програмної моделі комп'ютера, але не конкретної реалізації.[2] Інші описи комп'ютерної архітектури містять опис архітектури системи команд, логічної побудови та реалізації.[3]

Серед таких комп'ютерних архітектур, найбільшого поширення отримали 2 типи архітектури: прінстонська (фон Неймана) і гарвардська. Обидві вони виділяють 2 основних вузли ЕОМ: центральний процесор і пам'ять комп'ютера. Різниця полягає в структурі пам'яті: в прінстонській архітектурі програми і дані зберігаються в одному масиві пам'яті і передаються в процесор одним каналом, тоді як гарвардська архітектура передбачає окремі сховища і потоки передачі для команд і даних.

У докладніший опис, що визначає конкретну архітектуру, також входять: структурна схема ЕОМ, засоби і способи доступу до елементів цієї структурної схеми, організація і розрядність інтерфейсів ЕОМ, набір і доступність регістрів, організація пам'яті та способи її адресації, набір і формат машинних команд процесора, способи представлення і формати даних, правила обробки переривань.

За перерахованими ознаками та їх поєднаннями серед архітектур виділяють:

  • За розрядністю інтерфейсів і машинних слів: 8 -, 16 -, 32 -, 64-розрядні (ряд ЕОМ має й інші розрядності);
  • За особливостями набору регістрів, формату команд і даних: CISC, RISC, VLIW;
  • За кількістю центральних процесорів: однопроцесорні, багатопроцесорні, суперскалярні;
  • багатопроцесорні за принципом взаємодії з пам'яттю: симетричні багатопроцесорні (SMP), масивно-паралельні (MPP), розподілені.

Підкатегорії[ред.ред. код]

Дисціпліни компютерної архітектури мають три основні підкатегорії:[4]

  1. Архітектура системи команд (англ. instruction set architecture, ISA). Архітектура системи команд визначає машинний код, який процесор зчитує і виконує, а також розмір слова, способи адресації пам'яті, регістри процесора, і формати даних.
  2. Мікроархітектура, або побудова комп'ютера (англ. computer organization) описує, як процесор реалізує систему команд.[5] Наприклад, розмір кеша процесора[ru] це виключно питання побудови комп'ютера і немає нічого спільного з архітектурою системи команд.
  3. Системне проектування (англ. System Design) містить усі інші апаратні елементи обчислювальної системи. Це включає:
    1. Обробка даних поза процесором, така як прямий доступ до пам'яті (DMA)
    2. Інші властивості, такі, як віртуалізація, багатопроцесорність та програмне забезпечення.

Деякі архітектури від таких компаній, як Intel і AMD використовують більш тонкі відмінності. Наприклад, вони послуговуються макроархітектурою, це шар більш абстрактний ніж мікроархітектура.

Виникнення терміну[ред.ред. код]

Поняття архітектури ЕОМ вперше було успішно застосовано при проектуванні серії обчислювальних машин IBM System/360, серії універсальних ЕОМ загального призначення, кожна з яких мала різну швидкодію та конструктивні особливості, але всі вони були програмно сумісними. Така сумісність означала можливість виконувати програми без необхідності їх додаткової адаптації до різних моделей серії та була певною мірою революційною, адже в той час практично всі ЕОМ випускались, як би ми зараз сказали, з унікальною архітектурою і необхідні були суттєві витрати для адаптації існуючого програмного забезпечення до нових моделей обчислювальної техніки. І якщо для спеціалізованих обчислювачів це було платою за високі показники швидкодії, то для класу універсальних ЕОМ така ситуація була неприпустимою.

Спеціалісти фірми IBM при створенні System/360 (S/360) зробили архітектуру єдиною для всіх машин серії, але реалізували її в кожній машині по-різному. В 1964 році було анонсовано зразу 6 моделей S/360.

Архітектура S/360 саме завдяки такій сумісності моделей мала надзвичайний комерційний успіх та отримала свій розвиток в наступній серії System/360, і в новій серії z/Server.

Архітектури та програмна сумісність[ред.ред. код]

Аналогічно тому, як стрілковий годинник багато віків залишається зручним способом слідкування за часом, вдалі архітектури ЕОМ можуть залишатись конкурентоспроможними протягом десятиліть. Еволюціонувати може і сама архітектура, збагачуючи програміста новими інструментами для написання надійніших та швидкодіючих програм.

Приклад — архітектура IA-32 (у вживанішому позначенні x86, починаючи з i386) центрального процесора фірми Intel, яка є ключовою складовою загальної архітектури ЕОМ. Ця архітектура не була революційною, а зберегла повну сумісність знизу вгору з попередньою архітектурою IA-16 (x86, закінчуючи i286), але в неї були додані нові інструменти для роботи в захищеному режимі, організації багатозадачної роботи, розширена розрядність операндів тощо. Кожне наступне сімейство процесорів IA-32 включає нові інструменти, нові команди, але при цьому вимога до сумісності знизу вгору залишається недоторканною.

Ця сумісність є певною жертвою з боку розробника, який міг би, напевно, запропонувати радикально нову архітектуру, яка має масу переваг в порівнянні з іншими, морально застарілими, але він таким вчинком змусив би користувачів на колосальні витрати, пов'язані з адаптацією існуючого програмного забезпечення, накопиченого за багато років експлуатації. Ця обставина миттєво нівелює будь-які аргументи привабливості нової архітектури для більшості потенційних користувачів. Акуратніший підхід якраз полягає в забезпеченні еволюційної наступності нових архітектур.

Існує й інше вирішення проблеми сумісності програмного забезпечення з різними архітектурами ЕОМ — використання мов програмування високого рівня для написання крос-платформених програм (переносимих програм). Під переносимими програмами розуміють такі програми, в текстах яких не використовуються ніякі специфічні для будь-якої конкретної архітектури відомості. Мова високого рівня повинна в свою чергу бути стандартизованою. Це дає гарантію того, що одного разу написана, програма може бути використана на різних архітектурах. Відповідальність за адаптацію високорівневих конструкцій мови програмування до особливостей конкретної архітектури бере на себе компілятор з цієї мови для даної конкретної архітектури.

Примітки[ред.ред. код]

  1. Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering. Association for Computing Machinery. 2004. с. 60. «Computer architecture is a key component of computer engineering and the practicing computer engineer should have a practical understanding of this topic...» 
  2. Clements, Alan. Principles of Computer Hardware (вид. Fourth Edition). с. 1. «Architecture describes the internal organization of a computer in an abstract way; that is, it defines the capabilities of the computer and its programming model. You can have two computers that have been constructed in different ways with different technologies but with the same architecture.» 
  3. Hennessy, John; Patterson, David. Computer Architecture: A Quantitative Approach (вид. Fifth Edition). с. 11. «This task has many aspects, including instruction set design, functional organization, logic design, and implementation.» 
  4. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach (вид. Third Edition). Morgan Kaufmann Publishers. 
  5. Laplante, Phillip A. (2001). Dictionary of Computer Science, Engineering, and Technology. CRC Press. с. 94–95. ISBN 0-8493-2691-5. 

Див. також[ред.ред. код]