Вуглець

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Карбон (C)
Атомний номер 6
Зовнішній вигляд простої речовини матово-чорний (графіт)
прозорий (алмаз)
Властивості атома
Атомна маса (молярна маса) 12,011 а.о.м. (г/моль)
Радіус атома 91 пм
Енергія іонізації (перший електрон) 1085,7(11,25) кДж/моль (еВ)
Електронна конфігурація [He] 2s2 2p2
Хімічні властивості
Ковалентний радіус 77 пм
Радіус іона 16 (+4e) 260 (-4e) пм
Електронегативність (за Полінгом) 2,55
Електродний потенціал
Ступені окиснення 4, 2, -4
Термодинамічні властивості
Густина 2,25 (графіт) г/см³
Молярна теплоємність 0,711 Дж/(К·моль)
Теплопровідність 1,59 Вт/(м·К)
Температура плавлення 3820 К
Теплота плавлення n/a кДж/моль
Температура кипіння 5100 К
Теплота випаровування n/a кДж/моль
Молярний об'єм 5,3 см³/моль
Кристалічна ґратка
Структура ґратки гексагональна (графіт)
Період ґратки 3,570 Å
Відношення с/а n/a
Температура Дебая 1860,00 К
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
CMNS: Вуглець у Вікісховищі
a) Алмаз, b) Графіт (Графен) c) Лонсдейліт d) Фулерен (C60) e) C540 f) C70 g) Аморфний вуглець h) Вуглецеві нанотрубки

Карбо́н (С) або вугле́ць — хімічний елемент з атомним номером 6. Позначається С, належить до поширених елементів земної кори, складаючи близько 0,1% її маси. Сполуки вуглецю є основою всіх рослинних і тваринних організмів.

Історія

Вуглець у вигляді деревного вугілля застосовувався в давнину для виплавки металів. Здавна відомі алотропні модифікації вуглецю — алмаз і графіт.

На рубежі XVII—XVIII ст. виникла теорія флогістону, висунута Йоганном Бехером, і Георгом Шталем. Ця теорія визнавала наявність в кожному горючому тілі особливого елементарного речовини — невагомого флюїду — флогістону, що випаровується в процесі горіння. Так як при згорянні великої кількості вугілля залишається лише трохи золи, флогістики вважали, що вугілля — це майже чистий флогістон. Саме цим пояснювали, зокрема, «флогістувальну» дію вугілля, — його здатність відновлювати метали з «вапен» і руд. Пізніші флогістики, Реомюр, Бергман і інші, вже почали розуміти, що вугілля є елементарною речовиною. Проте вперше таким «чисте вугілля» було визнане Антуаном Лавуазьє, який досліджував процес спалювання в повітрі ат кисні вугілля та інших речовин. У книзі Гітона де Морво, Лавуазьє, Бертолле та Фуркруа «Метод хімічної номенклатури» (1787) з'явилася назва «вуглець» (carbone) замість французького «чисте вугілля» (charbone pur). Під цією ж назвою вуглець фігурує в «Таблиці простих тіл» і в «Елементарний підручник хімії» Лавуазьє.

1791 року англійський хімік Теннант першим отримав вільний вуглець, він пропускав пари фосфору над прожареною крейдою, в результаті чого утворювалися фосфат кальцію і вуглець. Те, що алмаз при сильному нагріванні згоряє без залишку, було відомо давно. Ще 1751 року французький король Франц I погодився дати алмаз і рубін для дослідів зі спалювання, після чого ці досліди навіть увійшли в моду. Виявилося, що згорає лише алмаз, а рубін (окис алюмінію з домішкою хрому) витримує без пошкодження тривале нагрівання у фокусі запалювальної лінзи. Лавуазьє поставив новий досвід по спалюванню алмазу за допомогою великої запалювальної машини і прийшов до висновку, що алмаз являє собою кристалічний вуглець. Другий алотроп вуглецю, графіт, в алхімічному періоді вважався видозміненим свинцевим блиском і називався plumbago; тільки 1740 року Потт виявив відсутність в графіті будь-які домішки свинцю. Шееле досліджував графіт (1779) і, будучи флогістиком, визнав його сірчистим тілом особливого роду, особливим мінеральним вугіллям, що містить пов'язану «повітряну кислоту» (СО2) і велику кількість флогістону.

Двадцять років по тому Гітоно де Морво шляхом обережного нагрівання перетворив алмаз в графіт, а потім у вугільну кислоту.

Загальна характеристика

За звичайних умов вуглець хімічно інертний, при високих температурах сполучається з багатьма елементами, виявляючи сильні відновні властивості. Найважливіша властивість вуглецю — здатність його атомів утворювати міцні хімічні зв'язки як між собою, так і з іншими елементами. Здатність вуглецю утворювати 4 рівнозначні валентні зв'язки з іншими атомами дозволяє будувати вуглецеві скелети різних типів (лінійні, розгалужені, циклічні); саме цими властивостями і пояснюється виняткова роль вуглецю в будові органічних сполук і, зокрема, всіх живих організмів.

Фізичні властивості

Ізотопи

Природний вуглець складається з двох стабільних ізотопів — 12С (98,93%) і 13С (1,07%) і одного радіоактивного ізотопу 14С (β-випромінювач, Т½ = 5730 років), зосередженого в атмосфері та верхній частині земної кори. Він постійно утворюється в нижніх шарах стратосфери в результаті впливу нейтронів космічного випромінювання на ядра азоту по реакції: 14N (n, p) 14C, а також, з середини 1950-х років, як техногенний продукт роботи АЕС і в результаті випробування водневих бомб.

На створенні та розпаді 14С заснований метод радіовуглецевого датування, широко застосовується в четвертинної геології та археології.

Алотропні видозміни

Вуглець утворює декілька алотропних видозмін:

Алмаз

Докладніше: Алмаз
Прозора та безбарвна або трохи забарвлена домішками в різноманітні відтінки кристалічна речовина. Він яскраво блищить внаслідок сильного заломлення проміння.

Алмаз — найтвердіша речовина серед усіх відомих. Завдяки своїй надзвичайній твердості він широко застосовується при бурінні твердих гірських порід, обробці твердих металів і їх сплавів тощо. Відшліфовані безбарвні кристали алмазу — діаманти — коштовні прикраси.

Найбільші родовища алмазів розташовано в Південній Африці та в Якутії. Щорічний світовий видобуток алмазу становить приблизно 300 кг. В останні роки алмаз почали одержувати штучно при дуже високих тисках і високій температурі.

Графіт

Докладніше: Графіт

Темно-сіра непрозора дрібнокристалічна речовина, жирна на дотик. На відміну від алмазу графіт добре проводить електричний струм і тепло і дуже м'який. Графіт у великих кількостях одержують штучно — нагріванням коксу або антрациту в спеціальних електричних печах при температурі близько 3000 °C і підвищеному тиску без доступу повітря. Штучний графіт відзначається високою чистотою і м'якістю. За своїми якостями він кращий за природний. Графіт широко застосовується для виготовлення електродів, в суміші з глиною для виробництва вогнетривких тиглів. З графіту роблять звичайні олівці. В суміші з мінеральним маслом його використовують як мастило для машин, що працюють при підвищених температурах.

Різка відмінність у фізичних властивостях алмазу і графіту обумовлюється їх різною кристалічною будовою. В кристалах алмазу кожний атом вуглецю оточений чотирма іншими атомами, розміщеними на однаковій віддалі один від одного. В кристалах графіту атоми вуглецю розміщені у кутах правильних шестикутників в одній площині і утворюють окремі шари. Віддаль між окремими шарами більша, ніж між атомами в тому ж шарі. Внаслідок цього зв'язок між окремими шарами значно слабший, ніж між атомами того ж шару. Тому кристали графіту легко розщеплюються на окремі лусочки, які самі по собі досить міцні.

Графен

Докладніше: Графен

Графен за своєю будовою — окремий атомний шар у структурі графіту — атоми вуглецю утворюють стільникову структуру з міжатомною віддаллю 142 пм. Без опори графен має тенденцію згортатися, але може бути стійким на підкладинці.

Карбін

Докладніше: Карбін

Штучно отриманий різновид вуглецю, який являє собою дрібнокристалічний порошок чорного кольору, кристалічна структура характеризується наявністю довгих ланцюжків атомів вуглецю, розташованих паралельно. Густина 3,23-3,30.

Фулерен

Докладніше: Фулерен

Специфічна вуглецева структура, молекула якої має вигляд м'яча. Внутрішня частина молекули пуста, що обумовлює широкі можливості для одержання на основі фулерену сполук включення.

Фулерени C60 Кристали

Вуглецеві нанотрубки

Специфічна вуглецева структура, в якій атоми вуглецю утворюють поверхню, що «скручена» в трубку нанорозмірів. Має унікальні фізичні властивості, зокрема міцність на розрив, адсорбційну здатність. Активно досліджується і має великі перспективи для використання. Вуглецеві нанотрубки виявлені у природі (шунгіт) і одержано штучно.

Аморфний вуглець

Стан вуглецю з неврегульованою структурою — (сажа, кокс, деревне вугілля). У природі не зустрічається. Його одержують штучно з різних сполук, що містять вуглець. Аморфний вуглець, або просто аморфне вугілля, насправді є кристалічним, але його кристалики такі малі, що їх не видно навіть у мікроскоп. Фізичні властивості «аморфного» вуглецю значною мірою залежать від дисперсності частинок та від наявності домішок.

Найважливішими технічними сортами аморфного вуглецю є сажа і деревне вугілля. Сажа являє собою найчистіший аморфний вуглець. У промисловості сажу одержують здебільшого термічним розкладом метану, а також при спалюванні різних органічних речовин при недостатньому доступі повітря. Сажу широко застосовують як наповнювач у виробництві гуми з каучуку, а також для виготовлення друкарських фарб, туші тощо.

Деревне вугілля добувають нагріванням дерева без доступу повітря у спеціальних печах. Його застосовують у металургії для одержання високих сортів чавуну і сталі, в ковальській справі, для виготовлення чорного пороху і як адсорбент.

Лонсдейліт

Лонсдейліт виявлено у метеоритах і отримано штучно; його структура та фізичні властивості остаточно не встановлено.

Хімічні властивості

Хімічна активність різних алотропних видозмін вуглецю різна. Алмаз і графіт майже не вступають в хімічні реакції. Вони можуть реагувати лише з чистим киснем і тільки за дуже високої температури.

Аморфний вуглець, а також вугілля за звичайної температури досить інертні, але при сильному нагріванні їх активність різко зростає і вуглець безпосередньо сполучається з багатьма елементами. Так, при нагріванні на повітрі вугілля горить, утворюючи діоксид вуглецю:

  • C + O2 = CO2

При недостатньому доступі кисню повітря він частково згоряє до монооксиду вуглецю CO, в якому вуглець двовалентний:

  • 2C + O2 = 2CO

Коли через розжарене вугілля пропускати пари сірки, то утворюється сірковуглець:

  • C + 2S = CS2

При високій температурі вугілля досить сильний відновник. Воно віднімає кисень від оксидів багатьох металів. Наприклад:

  • 2CuO + C = 2Cu + CO2

Через цю здатність, вугілля широко застосовують у металургії для добування металів із руд.

Ступені окислення +4, −4, рідко +2 (З, карбіди металів), +3 (C2N2, галогенциани); спорідненість до електрона 1,27 еВ; енергія іонізації при послідовному переході від С0 до С4+ відповідно 11,2604, 24,383, 47,871 і 64,19 еВ.

Органічні сполуки

Завдяки здатності вуглецю утворювати полімерні ланцюжки, існує величезний клас з'єднань на основі вуглецю, яких значно більше, ніж неорганічних. Найбільші групи: вуглеводні, білки, жири та ін.

Розповсюдження

Вуглець у природі зустрічається як у вільному стані (алмаз, графіт, карбін і лонсдейліт, фулерен, вуглецеві нанотрубки), так і у вигляді різноманітних сполук. Середній вміст вуглецю у земній корі 2,3×10−2 % (мас); основна маса вуглецю концентрується в осадових гірських породах. Вуглець накопичується у верхній частині земної кори, де його присутність пов'язана в основному з живою речовиною, кам'яним вугіллям, нафтою, антрацитом, а також з доломітами і вапняками. Відомо понад 100 мінералів вуглецю, серед яких найпоширеніші карбонати кальцію, магнію і заліза. Він входить до складу кам'яного вугілля, нафти і природного газу, а також різних мінералів: мармуру, крейди і вапняку — CaCO3, доломіту — CaCO3·MgCO3, магнезиту — MgCO3, малахіту — CuCO3·Cu(OH)2 тощо.

Важливу роль вуглець відіграє в космосі; на Сонці вуглець посідає 4-е місце за поширеністю після водню, гелію та кисню, ядра вуглецю беруть участь у процесах нуклеосинтезу (вуглецево-азотний цикл, потрійна α-реакція).

Більшість сполук вуглецю, і насамперед вуглеводні, мають яскраво вираженим характером ковалентних сполук. Міцність простих, подвійних і потрійних зв'язків атомів С між собою, здатність утворювати стійкі ланцюги та цикли з атомів С обумовлюють існування величезного числа вуглецевмісних сполук, що вивчаються органічною хімією.

У природі зустрічається мінерал шунгіт, в якому міститься як твердий вуглець (≈ 25%), так і значні кількості оксиду кремнію (≈ 35%).

Біологічна роль

Сполуки вуглецю є основою всіх рослинних і тваринних організмів.

Застосування

Деревне вугілля має здатність адсорбувати (поглинати) на своїй поверхні різні гази і деякі речовини з розчинів. Адсорбція відбувається поверхнею вугілля, тому воно здатне поглинати (адсорбувати) тим більшу кількість речовин, чим більша його сумарна поверхня, тобто чим більше воно подрібнене або пористе. Пористість, а разом з тим і адсорбційна здатність деревного вугілля різко збільшується при попередньому нагріванні в струмені водяної пари. При цьому пори вугілля очищаються від смолистих речовин і його внутрішня поверхня дуже збільшується. Таке вугілля називається активованим.

Активоване деревне вугілля широко використовують у цукровому виробництві для очистки цукрового сиропу від домішок, що надають йому жовтого забарвлення, в спиртовому виробництві для очистки винного спирту від сивушних олій, в деяких виробництвах для вловлювання парів цінних летких речовин — бензину, ефіру, сірковуглецю, бензолу тощо з наступним видаленням їх при нагріванні.

У першу світову війну активоване вугілля за пропозицією академіка М. Д. Зелінського було застосовано в протигазах для захисту органів дихання від отруйних газів, зокрема від хлору, який німці застосували в 1915 р. проти французьких військ. Активоване вугілля як адсорбент застосовується і в сучасних протигазах.

Графіт використовується в олівцевій промисловості. Також його використовують як мастило при особливо високих або низьких температурах.

Алмаз, завдяки винятковій твердості, незамінний абразивний матеріал. Алмазним напиленням володіють шліфувальні насадки бормашин. Крім цього, ограновані алмази — діаманти використовуються як дорогоцінне камення в ювелірних прикрасах. Завдяки рідкості, високим декоративним якостям і збігом історичних обставин, діамант незмінно є найдорожчим дорогоцінним каменем. Виключно висока теплопровідність алмазу (до 2000 Вт/м·К) робить його перспективним матеріалом для напівпровідникової техніки в якості підкладок для процесорів. Але відносно висока ціна (близько 50 доларів/грам) і складність обробки алмазу обмежують його застосування в цій галузі.

У фармакології та медицині широко використовуються різні сполуки вуглецю — похідні вугільної кислоти та карбонових кислот, різні гетероцикли, полімери та інші сполуки. Так, карболен (активоване вугілля), застосовується для абсорбції та виведення з організму різних токсинів; графіт (у вигляді мазей) — для лікування шкірних захворювань; радіоактивні ізотопи вуглецю — для наукових досліджень (радіовуглецевий аналіз).

Вуглець є основою всіх органічних речовин. Будь-який живий організм складається в значній мірі з вуглецю. Джерелом вуглецю для живих організмів зазвичай є СО2 з атмосфери або води. У результаті фотосинтезу він потрапляє в біологічні харчові ланцюги, в яких живі істоти поїдають один одного або останки один одного і тим самим здобувають вуглець для будівництва власного тіла. Біологічний цикл вуглецю закінчується або окисненням і поверненням в атмосферу, або похованням у вигляді вугілля або нафти.

Токсична дія

Високий вміст вуглецю в атмосферних аерозолях веде до підвищення захворюваності населення, особливо верхніх дихальних шляхів і легень. Професійні захворювання — в основному антракоз і пиловий бронхіт.

Токсична дія 14С, що увійшов до складу молекул білків (особливо в ДНК і РНК), визначається його радіаційним взаємодією з β-частинками (14С (β) → 14N), що призводить до зміни хімічного складу молекули.

Поглинання вуглецю

Звичайно стосується поглинання вуглецю (у вигляді вуглекислого газу) з атмосфери такими поглиначами, як океани, ліси або ґрунти, які утримують вуглець поза атмосферою.

Див. також

Джерела

  • Глосарій термінів з хімії // Й.Опейда, О.Швайка. Ін-т фізико-органічної хімії та вуглехімії ім.. Л. М. Литвиненка НАН України, Донецький національний університет — Донецьк:"Вебер", 2008. — 758 с. ISBN 978-966-335-206-0
  • Ф. А. Деркач «Хімія» Л. 1968.
  • Мала гірнича енциклопедія : у 3 т. / за ред. В. С. Білецького. — Д. : Східний видавничий дім, 2004—2013.
  • Саранчук В. И. и др. Углерод: неизвестное об известном. — Донецк: УК Центр, 2006.
  • Бухаркина Т. В. Химия природных энергоносителей и углеродных материалов / Т.В. Бухаркина, Н.Г. Дигуров. — М. : РХТУ им. Д.И. Менделеева, 1999. — 195 с. — ISBN 5-7237-0139-8.
  • Ола Д.А. Химия гиперкоординированного углерода = Hupercarbon chemistry / Ола Дж., Пракаш Г.К.С., Уильямс Р.Е. и др. Переклад з англ. В.И. Минкина. — М. : Мир, 1990. — 336 с. — ISBN 5-03-001451-9.

Шаблон:Link FA Шаблон:Link FA Шаблон:Link FA Шаблон:Link GA Шаблон:Link GA