Геометричний броунівський рух

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Геометричний броунівський рух (GBM)випадковий процес з неперервним часом, логарифм якого являє собою броунівський рух(вінерівський процес). GBM застосовується з метою моделювання ціноутворення на фінансових ринках і використовується переважно в моделях ціноутворення опціонів, оскільки GBM може приймати будь-які додатні значення. GBM є розумним наближенням до реальної динаміки цін акцій, не враховує, однак, рідкісні події (викиди).

Випадковий процес St є GBM, якщо він задовольняє наступне стохастичне диференціальне рівняння:

де є броунівський рух, а («параметр сноса») і («параметр волатильності») постійні.

Для довільного початкового значення S0 дане СДР має розв'язки

що є логнормально розподілена випадкова величина з математичним очікуванням і дисперсією

Коректність рішення може бути встановлена з використанням леми Іто. Випадкова величина log(St/S0) розподілена нормально з маточікуванням і дисперсією , що означає, що прирости GBM нормальні, що дає можливість говорити про «геометричність» процесу.

Література[ред.ред. код]

  • Булинский А. В., Ширяев А. Н. Теория случайных процессов. — М.: ФИЗМАТЛИТ, 2005. - 408 с.


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.