Діагональна матриця

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Діагональна матрицяквадратна матриця, всі недіагональні елементи якої дорівнюють нулю.

Більш формально, діагональною називають таку матрицю , що .

Можна також записати

,

де символ Кронекера.

Одинична матриця діагональна за визначенням.

Властивості

[ред. | ред. код]
  • Сума, добуток та обернена матриця(якщо існує) діагональних матриць є діагональною матрицею. Діагональні матриці утворюють підкільце в кільці симетричних матриць:
  • Визначник діагональної матриці дорівнює добутку всіх елементів головної діагоналі.
  • В матриці власними значеннями є з власними векторами .
  • Достатньою умовою приведення матриці до діагонального вигляду є попарна відмінність всіх власних значень матриці.

Застосування

[ред. | ред. код]

Над полем дійсних чи комплексних чисел справедливі й такі твердження:

Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]