Діаграма Венна

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Діаграма Венна для множин A, B, та C

Діаграма Венна (англ. Venn diagram) — діаграма, що показує всі можливі логічні відношення для скінченного набору множин.

Діаграми Венна придумані приблизно в 1880 Джоном Венном.[1] Використовуються для вивчення елементарної теорії множин, та ілюстрування простих співвідношень в теорії ймовірностей, логіці, статистиці, мовознавстві та інформатиці.

Окрім діаграм Венна, для зображення множин використовують також кола Ейлера. Кола Ейлера використовуються для зображення всіх можливих відношень між різними множинами, в тому числі і таких коли одна множина містить іншу або взагалі відсутні перетини множин. Діаграма Венна зображує, всі можливі перетини множин. Всього таких перетинів буде 2^n, де n — кількість множин. Для трьох множин діаграма Венна звичайно зображується у вигляді трьох кіл з центрами в вершинах рівностороннього трикутника і однаковим радіусом, приблизно рівним довжині сторони трикутника.

При вирішенні цілого ряду завдань Леонард Ейлер використовував ідею зображення множин за допомогою кіл. Однак цим методом ще до Ейлера користувався видатний німецький філософ і математик Готфрід Вільгельм Лейбніц (1646–1716). Лейбніц використав їх для геометричної інтерпретації логічних зв'язків між поняттями, але при цьому все ж таки вважав за краще використовувати лінійні схеми.

Але досить ґрунтовно розвинув цей метод сам Л. Ейлер. Методом кіл Ейлера користувався і німецький математик Ернст Шредер (1841–1902) у книзі «Алгебра логіки». Особливого розквіту графічні методи досягли в творах англійського логіка Джона Венна (1843–1923), який докладно виклав їх у книзі «Символічна логіка», виданій в Лондоні в 1881 році. Тому такі схеми іноді називають Діаграми Ейлера — Венна.

Розширення на більшу кількість множин[ред.ред. код]

Зазвичай діаграми Венна представляють дві або три множини. Для більшої кількості множин доводиться жертвувати симетрією зображення.



Посилання[ред.ред. код]

  1. Venn, J. On the Diagrammatic and Mechanical Representation of Propositions and Reasonings // Philosophical Magazine and Journal of Science. — 10 (July 1880) (59).