Згортка (математичний аналіз)

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Згортка двох квадратних імпульсів: результатом є імпульс трикутної форми. Одна з функцій (в даному випадку g) спочатку відображається черезз і тоді зсувається на t, результатом є . Площа під кривою, що є добутком цих фунцій і є згорткою по t. Горизонтальна вісь це для f і g, і t для .
Згортка квадратного імпульсу (вхідний сигнал) з імпульсом відповіді в RC колі для отримання кривої вихідного сигналу. Інтеграл добутку — це площа жовтої ділянки.

Згорткою (англ. convolution) двох функцій та називають вираз

Основною властивістю згортки є те, що фур'є-образ згортки пропорційний добутку фур'є-образів функцій.

Згортка на групах[ред.ред. код]

Нехай група Лі, оснащена мірою Хаара , і — дві функції, визначенні на . Тоді їх згорткою називається функція

.

Приклад програми[ред.ред. код]

Нижче наведено приклад згортки, написаний на С++ :

/*
 * Розмір вихідної послідовності рівний M + N - 1 
 */
double * conv(double * x, int N, double * h, int M)
{
    double * result = new double[N + M - 1];
    memset(result, 0, sizeof(double) * (N + M - 1));

    for (int i = 0; i < N; ++i)
    {
        for (int j = 0; j < M; ++j)
        {
            result[i + j] += x[i] * h[j];
        }
    }

    return result;
}

Література[ред.ред. код]


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.