Зрізаний куб

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Truncatedhexahedron.gif
Тривимірна модель зрізаного куба

Зрі́заний куб або ж зрі́заний гекса́едрнапівправильний многогранник, відноситься до архімедових тіл, що складається із 6-и правильних восьмикутників і 8-и правильних трикутників, 36-и ребер і 24-х кутів. Двоїстий до зрізаного куба многогранник — триакісоктаедр.

Отримати даний многогранник можна за рахунок зрізання всіх чотирьох вершин куба на третину від первісної довжини ребра.

Ортогональні проєкції. Зрізаний куб має п'ять спеціальних ортопроєкцій - по центру, на вершині, на двох типах ребер, і двох типах площин: трикутниках і восьмикутниках.
Cube t01 v.png Cube t01 e38.png Cube t01 e88.png 3-cube t01 B2.svg 3-cube t01.svg

Формули[ред. | ред. код]

Знаючи довжину ребра зрізаного куба - a - отримуємо:

Математичний опис
Об'єм
Площа поверхні


Графічне зображення[ред. | ред. код]

Cube-connected cycles.svg

Розгортка зрізаного куба


Сферична плитка[ред. | ред. код]

Зрізаний куб можна подати у вигляді сферичної плитки, і спроєктувати на площину у вигляді стереографічної проєкції. Ця проєкція буде конформною, зберігаючи кути, але не площини чи ребра багатогранника. Прямі лінії на сфері проєктуватимуться як дуги на площині.

Uniform tiling 432-t01.png Truncated cube stereographic projection octagon.png
центрована восьмикутником
Truncated cube stereographic projection triangle.png
центрована трикутником
Сферична плитка Стереографічна проєкція

Джерела[ред. | ред. код]

  • Weisstein, Eric W. Cuboctahedron(англ.) на сайті Wolfram MathWorld.
  • Пчелінцев В.О. Кристалографія, кристалохімія та мінералогія. Навчальний посібник для студентів вищих навчальних закладів. Суми: Вид-во СумДУ, 2008, - 232с.
  • Гордєєва Є.П., Величко В.Л. Нарисна геометрія. Багатогранники (правильні, напівправильні та зірчасті). Частина І. Навчальний посібник. Луцьк: Редакційно-видавничий відділ ЛДТУ, 2007, – 198с.
  • П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. Многоугольники и многогранники. Энциклопедия элементарной математики. Москва: Государственное издательство физико-математической литературы, 1963, - 568с.