Очікує на перевірку

Конгруентні матриці

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Квадратні матриці називаються конгруентними, якщо існує невироджена матриця , що виконується :

Конгруентні матриці виникають під час зміни базису білінійної форми чи квадратичної форми. Дві матриці є конгруентними тоді і тільки тоді, коли вони описують одну і ту ж білінійну форму в різних базисах.

Перехід від одного базису до іншого задається матрицею переходу

Закон інерції Сильвестра

[ред. | ред. код]

Щоб спростити задання білінійної форми, шукають базис в якому її матриця є діагональною.

Довільна дійсна симетрична матриця є конгруентною до деякої діагональної матриці, при чому, можна обмежитись тільки ортогональними перетвореннями

І діагональна матриця буде складатись з власних значень матриці (див. Подібні матриці).

Якщо ж не обмежуватись тільки ортогональними перетвореннями, то можна добитись, що на діагоналі будуть тільки числа -1, 0, +1.

Закон інерції Сильвестра стверджує, що дві дійсні симетричні матриці конгруентні тоді і тільки тоді, коли в них однакова кількість додатних, від'ємних і нульових власних значень.

Дивись також

[ред. | ред. код]

Джерела

[ред. | ред. код]