Кубічні сплайни Ерміта

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Інтерполяція Ерміта.

Кубічні сплайни Ерміта — кубічні сплайни, що використовують інтерполювання поліномами методом Ерміта. Цей метод інтерполювання використовує дві контрольні точки та два вектори напрямків.

Названі на честь французького математика Шарля Ерміта.

Інтерполяція на інтервалі[ред.ред. код]

Інтерполяція на інтервалі (0,1)[ред.ред. код]

f(t) f(0) f(1) f'(0) f'(1)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Задано початкову точку з початковим вектором при та кінцеву точку з кінцевим вектором при .

Для кубічного полінома та його похідної

виразимо коефіцієнти через :

Підставивши значення полінома та його похідної із таблиці справа, отримаємо чотири базові ермітові поліноми:

Базис для кубічних ермітових сплайнів.

Тоді інтерполяційний поліном визначається як лінійна комбінація чотирьох базових:

Існують такі властивості симетрії:

— симетрія відносно осі y=1/2,
— симетрія відносно осі x=1/2,
— симетрія відносно точки (0, 1/2).

Інтерполяція на інтервалі [ред.ред. код]

Інтерполяція на цьому інтервалі задається формулою

Зв'язок з кривими Без'є[ред.ред. код]

Чотири базові ермітові поліноми легко виразити через поліноми Бернштейна, що є базисними для кривих Без'є

Тому кубічний сплайн Ерміта з параметрами

аналогічний кубічній кривій Без'є з опорними вершинами

Інтерполяція сплайном[ред.ред. код]

Інтерполяції набору точок для , здійснюється для кожного інтервалу, і параметри для однієї точки в різних інтервалах вибираються одинаковими. Інтерполяційний сплайн отримується неперервно-диференційовним на

Існують декілька способів задання параметрів.

Кінцеві різниці[ред.ред. код]

Найпростіший спосіб із застосуванням трьох контрольних точок:

для індексів , і односторонні різниці на кінцях.

Кардинальні сплайни[ред.ред. код]

Параметр .

Сплайни Кетмал-Рома[ред.ред. код]