Локальна теорема Муавра — Лапласа
Зовнішній вигляд
Локальна теорема Муавра — Лапласа описує наближення нормального розподілу до біноміального розподілу. Є окремим випадком центральної граничної теореми.
Якщо , тоді для k в -околі точки np, існує наближення[1]
Гранична форма теореми стверджує, що
для
Можливо, формулювання стає ясним не відразу, проте практичний зміст теореми простий: при великих значеннях n імовірність спостерігаючи рівно m успіхів можна приблизно розраховувати за формулою:
Якщо вас цікавить імовірність того, що число успіхів буде лежати в деяких межах - - у розрахунках допомагає інтегральна теорема Муавра-Лапласа.
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнєденко Б. В. Курс теорії ймовірностей. — Київ : ВПЦ Київський університет, 2010. — 464 с.
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
- Шефтель З. Г. Теорія ймовірностей. — 2-е. — Київ : Вища школа, 1994. — 192 с.(укр.)
- Сеньо П. С. (2007). Теорія ймовірностей та математична статистика (вид. 2-ге.). Київ: Знання. с. 556.
- ↑ Papoulis, Pillai, «Probability, Random Variables, and Stochastic Processes», 4th Edition
| Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |