Перейти до вмісту

Локальна теорема Муавра — Лапласа

Матеріал з Вікіпедії — вільної енциклопедії.

Локальна теорема МуавраЛапласа описує наближення нормального розподілу до біноміального розподілу. Є окремим випадком центральної граничної теореми.

Теорема

[ред. | ред. код]

Якщо , тоді для k в -околі точки np, існує наближення[1]

Гранична форма теореми стверджує, що

для

Додаток

[ред. | ред. код]

Можливо, формулювання стає ясним не відразу, проте практичний зміст теореми простий: при великих значеннях n імовірність спостерігаючи рівно m успіхів можна приблизно розраховувати за формулою:

Якщо вас цікавить імовірність того, що число успіхів буде лежати в деяких межах - - у розрахунках допомагає інтегральна теорема Муавра-Лапласа.


Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]
  • Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
  • Гнєденко Б. В. Курс теорії ймовірностей. — Київ : ВПЦ Київський університет, 2010. — 464 с.
  • Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
  • Шефтель З. Г. Теорія ймовірностей. — 2-е. — Київ : Вища школа, 1994. — 192 с.(укр.)
  • Сеньо П. С. (2007). Теорія ймовірностей та математична статистика (вид. 2-ге.). Київ: Знання. с. 556.


Примітки

[ред. | ред. код]
  1. Papoulis, Pillai, «Probability, Random Variables, and Stochastic Processes», 4th Edition