Магнітне поле

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
На малюнку зображено провідник, навколо якого існує магнітне поле
Магнітні силові лінії, утворені залізною стружкою на папері, до якого піднесений магніт

Магні́тне по́ле — складова електромагнітного поля, за допомогою якої здійснюється взаємодія між рухомими електрично зарядженими частинками.

Магнітне поле — складова електромагнітного поля, яка створюється змінним у часі електричним полем, рухомими електричними зарядами або спінами заряджених частинок. Магнітне поле спричиняє силову дію на рухомі електричні заряди. Нерухомі електричні заряди з магнітним полем не взаємодіють, але елементарні частинки з ненульовим спіном, які мають власний магнітний момент, є джерелом магнітного поля і магнітне поле спричиняє на них силову дію, навіть якщо вони перебувають у стані спокою.

Магнітне поле утворюється, наприклад, у просторі довкола провідника, по якому тече струм або довкола постійного магніту.

Магнітне поле є векторним полем, тобто з кожною точкою простору пов'язаний вектор магнітної індукції \mathbf{B} \ який характеризує величину і напрям магнітого поля у цій точці і може мінятися з плином часу. Поряд з вектором магнітної індукції  \mathbf{B} \ , магнітне поле також описується вектором напруженості \mathbf{H} \ .

У вакуумі ці вектори пропорційні між собою:

 \mathbf{B} = k \mathbf{H} ,

де k — константа, що залежить від вибору системи одиниць.

В системі СІ,   k = \mu_0 — так званій магнітній проникності вакууму. Деякі системи одиниць, наприклад СГСГ, побудовані так, щоб вектори індукції та напруженості магнітного поля тотожно дорівнювали один одному:  k=1  \ .

Однак у середовищі ці вектори є різними: вектор напруженості  \mathbf{H} \ описує лише магнітне поле створене рухомими зарядами (струмами) ігноруючи поле створене середовищем, тоді як вектор індукції  \mathbf{B} \ враховує ще й вплив середовища:

 \mathbf{B} =  \mathbf{H} + 4\pi\mathbf{M} , [1]

де  \mathbf{M}   — вектор намагніченості середовища.

Утворення магнітного поля

На відміну від електричних зарядів, магнітних зарядів, що створювали б магнітне поле аналогічним чином, не спостерігається. Теоретично такі заряди, які отримали назву магнітних монополів, могли б існувати. В такому випадку електричне і магнітне поле були б повністю симетричними.

Таким чином, найменшою одиницею, яка може створювати магнітне поле, є магнітний диполь. Магнітний диполь відрізняється тим, що в нього завжди є два полюси, в яких починаються і кінчаються силові лінії поля. Мікроскопічні магнітні диполі зв'язані зі спінами елементарних частинок. Магнітний диполь мають як заряджені елементарні частинки, наприклад, електрони, так і нейтральні, наприклад, нейтрони. Елементарні частинки з відмінним від нуля спіном можна уявити собі як маленькі магнітики. Зазвичай, частинки з протилежними значеннями спінів спарюються, що призводить до компенсації створених ними магнітних полів, але в окремих випадках можливе вирівнювання спінів багатьох частинок в одному напрямку, що призводить до утворення постійних магнітів.

Магнітне поле — також створюється рухомими електричними зарядами, тобто електричним струмом.

Створенне електричним зарядом поле залежить від системи відліку. Відносно спостерігача, що рухається з однаковою із зарядом швидкістю, заряд нерухомий, і такий спостерігач фіксуватиме тільке створене ним електричне поле. Інший спостерігач, що рухається з іншою швидкістю, фіксуватиме як електричне, так і магнітне поле. Таким чином, електричне і магнітне поля взаємозв'язані, і є складовими частинами загального електромагнітного поля.

При протіканні електричного струму через провідник він залишається електрично нейтральним, однак носії заряду в ньому рухаються, тому навколо провідника виникає тільки магнітне поле. Величина цього поля визначається законом Біо-Савара, а напрям можна визначити за допомогою правила Ампера або правила правої руки. Таке поле є вихровим, тобто його силові лінії замкнуті.

Магнітне поле створюється також змінним електричним полем. За законом електромагнітної індукції змінне магнітне поле породжує змінне електричне поле, що також є вихровим. Взаємне створення електричного і магнітного поля змінними магнітним і електричним полем призводить до можливості розповсюдження в просторі електромагнітних хвиль.

Дія магнітного поля

Дія магнітного поля на рухомі заряди визначається силою Лоренца.

Сила, що діє на провідник зі струмом у магнітному полі називається силою Ампера. Сили взаємодії провідників зі струмом визначаються законом Ампера.

Нейтральні речовини без електричного струму можуть втягуватися в магнітне поле (парамагнетики) або виштовхуватися з нього (діамагнетики). Виштовхування діамагнетиків з магнітного поля можна використати для левітації.

Феромагнетики намагнічуються в магнітому полі й зберігають магнітний момент при знятті прикладеного поля.

Енергія магнітного поля

Енергія магнітного поля в просторі задається формулою

 W = \frac{1}{8\pi} \int \mathbf{B}\cdot\mathbf{H} dV  .

Відповідно, густина енергії магнітного поля дорівнює

 w = \frac{1}{8\pi} \mathbf{B}\cdot\mathbf{H} .

Енергія магнітного поля провідника зі струмом дорівнює:

 W = \frac{1}{2} L I^2 ,

де  I  — сила струму, а  L  — індуктивність, що залежить від форми провідника.

Термодинаміка

В зовнішньому магнітному полі, яке задається вектором магнітної індукції  \mathbf{B} змінюються значення термодинамічних потенціалів термодинамічних систем. Так, наприклад, приріст внутрішньої енергії одиничного об'єму термодинамічної системи при зміні величини індукції магнітного поля на  d\mathbf{B} дорівнює

 dU =  TdS + \frac{1}{4\pi}\mathbf{H}\cdot d\mathbf{B} ,

де S — ентропія, T — температура.

Відповідно, для вільної енергії

 dF =  -SdT + \frac{1}{4\pi}\mathbf{H}\cdot d\mathbf{B}

Таким чином, напруженість магнітного поля в термодинамічній системі визначається через часткову похідну від вільної енергії при сталій температурі

 H = 4 \pi \left( \frac{\partial F}{\partial B} \right)_T

Одиниці

Магнітна індукція B вимірюється в Теслах в системі СІ, і в Гаусах в системі СГС. Напруженість магнітного поля H вимірюється в А/м в системі CI і в Ерстедах в системі СГС.

Вимірювання

Магнітне поле вимірюється магнітометрами. Механічні магнітометри визначають величину поля за відхиленням котушки зі струмом. Слабкі магнітні поля вимірюються магнітометрами на основі ефекту Джозефсона — СКВІДами. Магнітне поле можна також вимірювати на основі ефекту ядерного магнітного резонансу, ефекту Хола та іншими методами.

Створення

Магнітне поле широко використовується в техніці й для наукових цілей. Для його створення використовуються постійні магніти та електромагніти. Однорідне магнітне поле можна отримати за допомогю котушок Гельмгольца. Для створення потужних магнітних полів, необхідних для роботи прискорювачів або для утримання плазми в установках з ядерного синтезу, використовуються електромагніти на надпровідниках.

Неоформлений додаток

В 1820 р. Х.Ерстед відкрив магнітне поле електричного струму. При цьому поява магнітного поля супроводжувала будь-який рух заряджених точок : магнітне поле виникає навколо металевого провідника зі струмом (рух електронів у твердому тілі), біля ванни з електролітом, в якій протікає струм (рух іонів) і навіть у вакумі біля пучка катодних променів (рух електронів, що під дією термоелектронної емісії випромінюються катодом. При цьому магнітна стрілка (згадаємо: «пробний заряд» в електриці) завжди розташовується перпендикулярно струмові.

Тоді ж А.Ампер встановив основні закони магнітної взаємодії струмів. Він застосував у фізиці новий термін — «молекулярні струми», що протікають в твердих речовинах. Наявністю таких струмів Ампер пояснив магнітні властивості речовин. Пізніше було встановлено, що роль молекулярних струмів в твердих тілах виконують електрони, які постійно рухаються по кругових орбітах навколо ядер.

Магнітне поле — складова частина, «електромагнітного поля», що є окремим видом матерії. Особливість магнітного поля проявляється в його механічному діянні лише на рухомі електричні заряди або на тіла, які мають магнітний момент, незалежно від того, рухаються вони чи ні. Джерелами магнітного поля є рухомі електричні заряди, наприклад, струм у провідниках. Магнітне поле пов'язане з електричним полем. Цей зв'язок проявляється в тому, що при зміні одного з них виникає друге. Магнітні поля, що існують навколо магнічених тіл, в тому числі й магнітів, спричиняються рухом електричних частинок, з яких складаються тіла (електронів, нуклонів). Основними характеристиками магнітного поля є вектор напруженості Н в заданій точці поля (у вакуумі) та вектор магнітної індукції В (при наявності середовища). Ці величини є силовими характеристиками діяння магнітного поля на певні магнітики або на контури з електричним струмом. Напруженість магнітного поля обчислюють в ерстедах (в СГСМ системні одиниці) і в («ампер на метр») в МКСА системі одиниць). Напрям вектора Н магнітного поля, створюваного електричним струмом у провіднику або контурі, можна визначити за правилом гвинта. Для наочної характеристики магнітного поля запроваджено поняття про лінії напруженості магнітного поля або лінії магнітної індукції, що є кривими лініями, дотичні до яких в кожній точці збігаються відповідно з напрямами векторів Н або В. самі ж величини цих векторів виражають густиною ліній напруженості чи індукції, тобто кількістю відповідних ліній, які перетинають перпендикулярну до них площину в 1 см² або в 1 м². Основним законом магнітних явищ вважають Біо-Савара закон.

Силовою характеристикою магнітного поля є вектор магнітної індукції В, який можна визначити за допомогою пробної прямокутної рамки KLNP із струмом І1 (рис.1). Проведемо через точку А (центр рамки) додатну нормаль п до площини, в якій лежить контур рамки. Додатний напрям нормалі збігається з поступальним рухом свердлика, якщо його рукоятку обертати в напрямі струму І1 у рамці. Нехай на ділянці KL струм І1 збігається за напрямом із струмом І, на ділянці NP — протилежний.

Магнітні поля обох струмів І й І1 взаємодіють, і, якщо дати можливість рамці повертатися відносно вертикальної осі, то вона встановиться так, що площина контуру KLNP суміститься з площиною, в якій лежить прямолінійний провідник із струмом І.

Магнітним моментом Рт замкнутого струму називається векторна фізична величина в напрямі додатної нормалі, яка вимірюється добутком величини струму в контурі на площу, яку охоплює цей контур, тобто Рт = І1 S де, де S —площа контура рамки. На рамку із струмом діє також механічний обертальний момент М пари сил. Вектор М має напрям вертикальної осі рамки і буде максимальний Mmax, якщо радіус-вектор r перпендикулярний до площини контура рамки. Усі досліди показують, що при r = const відношення — залишається незмінним.

Магнітна індукція визначається відношенням максимальної величини обертального механічного моменту рамки із струмом до її магнітного моменту: .

Магнітна індукція є величина векторна. Вектор та Рт мають напрям додатної нормалі п, якщо рамка перебуває в стані рівноваги М = 0.

Лініями магнітної індукції називають криві, дотичні до яких у кожній точці збігаються з напрямом вектора В в цих точках поля. Лінії магнітної індукції завжди замкнуті й охоплюють провідник із струмом. Для визначення напряму ліній магнітної індукції можна скористатися правилом свердлика:

якщо свердлик повертати так, щоб його поступальний рух збігався з напрямом струму І, то обертальний рух рукоятки покаже напрям ліній магнітної індукції (рис. 2). Зручне також і правило обхвату правою рукою: якщо великий палець правої руки спрямувати в напрямі струму, а рештою пальців обхопити провідник із струмом, то вони вкажуть напрям ліній магнітної індукції (і вектора В). Для наочного зображення магнітного поля використовують магнітні стрілки або залізні ошурки (рис. 3).

Див. також

Джерела

  • І.М.Кучерук, І.Т.Горбачук, П.П.Луцик (2006). Загальний курс фізики: Навчальний посібник у 3-х т. Т.2. Електрика і магнетизм. Київ: Техніка. 
  • Сивухин Д.В. (1977). Общий курс физики. т III. Электричество. Москва: Наука. 
  • Jackson, John David (1999). Classical Electrodynamics (3rd ed.). New York: Wiley. ISBN 0-471-30932-X

Примітки

  1. Формули на цій сторінці записані в системі СГС (СГСГ). Для перетворення в систему СІ дивись Правила переводу формул із системи СГС в систему СІ.