Напівнорма

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Напівнорма або переднорма — узагальнення поняття норми; на відміну від норми напівнорма може бути рівною нулю на ненульових елементах простору.

Визначення

[ред. | ред. код]

Напівнормою називається функція , у лінійному просторі над полем дійсних або комплексних чисел, що задовольняє наступним умовам:

  1. Абсолютна однорідність: для будь-якого скаляра
  2. Нерівність трикутника: для всіх

Простір називається напівнормованим простором.

Властивості

[ред. | ред. код]
Ця властивість одержується з першої умови визначення і рівності , тут перший нуль належить полю дійсних або комплексних чисел, а другий і третій — простору
Ця властивість також є наслідком першої умови при .
Якщо припустити існування такого , що , то з першої умови визначення одержується, що і . Скориставшись другою умовою одержуємо суперечність з першою властивістю.

Література

[ред. | ред. код]
  • Рудин У. Функциональный анализ, пер. с англ., — М., 1975.