Ненасичені жири

Матеріал з Вікіпедії — вільної енциклопедії.
(Перенаправлено з Ненасичені жирні кислоти)
Перейти до: навігація, пошук

Ненасичені жири — це жири або жирні кислоти, в яких є принаймні один подвійний зв'язок у ланцюзі жирної кислоти. Жирна кислота є мононенасиченою, якщо її ланцюг містить один подвійний зв'язок, і поліненасиченою, якщо він містить більше одного подвійного зв'язку.

Подвійні зв'язки утворюються на вуглецевому ланцюгу шляхом відщеплення двох атомів водню від сусідніх атомів карбону. Таким чином, у насичених жирах, у яких немає подвійних зв'язків, міститься максимальна кількість воднів приєднаних до атомів карбону, які є «насиченими» атомами водню. У клітинному метаболізмі, молекули ненасичених жирів містять менше енергії (тобто, менше калорій), ніж еквівалентна кількість насичених жирів. Чим більша ступінь ненасиченості жирної кислоти (тобто, чим більше подвійних зв'язків у жирних кислотах) тим більш вразлива молекула до пероксидного окислення (згіркнення). Антиоксиданти можуть захищати ненасичені жири від перексидного окислення.

Хімія і харчування[ред.ред. код]

Кількість жирів у окремих продуктах

Подвійні зв'язки можуть формувати цис- або транс- ізомери, в залежності від геометрії подвійного зв'язку. У цис- ізомерах, атоми водню знаходяться по одну сторону відносно подвійний зв'язку, тоді як в транс- ізомерах, вони знаходяться навпроти відносно подвійного зв'язку (див. Транс-жири). Насичені жири є корисними для приготування їжі, тому що вони менш схильні до пригоркання і, як правило, у більшості тверді за кімнатної температури, у порівнянні з ненасиченими жирами. Жири з ненасиченими ланцюгами мають низьку температуру плавлення, отже, ці молекули збільшують плинність клітинних мембран.

Хоча мононенасичені як і поліненасичені жири можуть замінювати насичені жири в раціоні, але варто уникати транс-ізомерів ненасичених жирів. Заміна насичених жирів з ненасиченими жирами, допомагають знизити рівень загального холестерину і Ліпопротеїнів низької щільності в крові.[1] Транс-ізомери ненасичених жирів є винятком, тому що стереохімія подвійного зв'язку схиляє вуглецевий ланцюг до формування лінійної конформації, яка відповідає жорсткій упаковці при утворенні бляшанки. Геометрія цис- подвійного зв'язку утворює вигин молекули, таким чином перешкоджає формуванню жорстких з'єднань. Природні джерела жирних кислот, багаті на цис-ізомери жирів[джерело?].

Хоча поліненасичені жири захищають проти серцевої аритмії, дослідження жінок після менопаузи, які вживали відносно мало жирів, показали, що поліненасичені жири позитивно впливають на прогресуючий коронарний атеросклероз, тоді як мононенасичені жири — ні.[2] Це, ймовірно, свідчить про більшу уразливість поліненасичених жирів до перексидного окислення, проти яких вітамін Е показав захисні властивості.[3]

Прикладами ненасичених жирних кислот є пальмітолеїнова, олеїнова, міристинова, лінолева і арахідонова кислоти. Продукти, які містять ненасичені жири: авокадо, горіхи, а також рослинні олії, такі як ріпакова і оливкова олії. М'ясні продукти містять насичені і ненасичені жири.

Хоча ненасичені жири умовно розглядаються, як корисніші, ніж насичені жири,[4] Управління Продовольства і Медикаментів США  (FDA) рекомендують, щоб кількість ненасичених жирів не перевищувала 30 % від усіх калорій денної порції .[джерело?] Більшість продуктів містять ненасичені і насичені жири. Маркетологи рекламують тільки один або інший тим жирів, в залежності від того яких із них міститься більше у продукції. Таким чином, різні ненасичені жирні рослинні олії, такі як оливкова олія, також містять насичені жири.[5]

У хімічному аналізі, жирні кислоти поділяються за допомогою газової хроматографії метилових ефірів[6]; крім того, розділення ненасичених ізомерів можливо аргентуванням тонкошарової хроматографії.[7]

Роль харчових жирів в резистентності до інсуліну[ред.ред. код]

Частота резистентності до інсуліну знижується з дієтами, які містять  більшу кількість мононенасичених жирів (особливо олеїнової кислоти), в той час як зворотне справедливо для дієти з високим вмістом поліненасичених жирів (особливо великої кількості арахідонової кислоти), а також насичених жирів (наприклад, арахінової кислоти). Ці співвідношення можуть бути співставлені з фосфоліпідами людини в скелетних м'язах та інших тканинах. Цей зв'язок між дієтичними жирами та інсулінорезистентністю вважається вторинним взаємозв'язком інсулінорезистентності та запалення, який частково модулюється жирами співвідношенні (Омега-3/6/9) з Омега-3 і Омега-9, які, як вважається мають протизапальну і Омега-6, прозапальну (а також безліч інших біологічно активних компонентів, зокрема, поліфеноли, а також фізичні вправи, разом мають протизапальну дію). Хоча обидві дії: прозапальна і протизапальна види жирів є біологічно необхідними, співвідношення харчових жирів у більшості американських дієт мають перекіс у бік Омега-6 жирних кислот, з подальшим розгальмовуванням запалення і посилення інсулінорезистентності. Але це суперечить пізніші дослідження, в яких показано, що поліненасичені жири захищають від інсулінорезистентності.

Мембранна композиція, як метаболічний стимулятор[ред.ред. код]

Дослідження на клітинних мембранах ссавців і рептилій виявили, що клітинні мембрани ссавців мають у своєму складі більшу кільість поліненасичених жирних кислот (ДГК, Омега-3 жирні кислоти), ніж у рептилій.[8] Дослідження жирнокислотного складу пташиних мембран відзначили схожі пропорції, як і для ссавців, але з меншою на третину кількістю Омега-3 жирних кислот порівняно до Омега-6 для даної площі тіла.[9] Таке співвідношення жирних кислот призводить до більш рідкої клітинної мембрани, але і більш проникної для різних іонів (Н+ і Na+), в результаті чого на клітинні мембрани організм витрачає багато зусиль для догляду та підтримки. Такі зусилля на обслуговування, як стверджується, і є однією з ключових причин високого рівня метаболізму та супутньої теплокровності ссавців і птахів. Проте поліненасиченість  клітинних мембран також може відбуватися, як відповідь на хронічний холод. У рибах, які проживають у все холоднішому середовищі, у клітинних мембранах збільшується вміст як мононенасичених, так і поліненасичених жирних кислот, для підтримання більшої текучості (і функціональності) мембран при нижчих температурах.[10][11]

Див. також[ред.ред. код]

Примітки[ред.ред. код]

  1. Reiner Željko (28 June 2011). ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). European Heart Journal 32 (14). с. 1769–818. PMID 21723445. doi:10.1016/j.atherosclerosis.2011.06.012. 
  2. Dariush Mozaffarian; Rimm, EB; Herrington, DM (1 November 2004). Dietary fats, carbohydrate, and progression of coronary atherosclerosis in postmenopausal women. American Journal of Clinical Nutrition 80 (5). с. 1175–84. PMC 1270002. PMID 15531663. 
  3. B Leibovitz; Hu, ML; Tappel, AL (1990). Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. The Journal of Nutrition 120 (1). с. 97–104. PMID 2303916. 
  4. Fats and sugars. BBC Health, retrieved 2013-04-07
  5. LH Storlien; Baur, LA; Kriketos, AD; Pan, DA; Cooney, GJ; Jenkins, AB; Calvert, GD; Campbell, LV (1996). Dietary fats and insulin action. Diabetologica 39 (6). с. 621–31. PMID 8781757. doi:10.1007/BF00418533. 
  6. Aizpurua-Olaizola, Oier; Ormazabal, Markel; Vallejo, Asier; Olivares, Maitane; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz (2015-01-01). Optimization of Supercritical Fluid Consecutive Extractions of Fatty Acids and Polyphenols from Vitis Vinifera Grape Wastes. Journal of Food Science (en) 80 (1). с. E101–E107. ISSN 1750-3841. doi:10.1111/1750-3841.12715. 
  7. B. Breuer, T. Stuhlfauth et H. P. Fock, Separation of fatty acids or methyl esters including positional and geometric isomers by alumina argentation thin-layer chromatography, J. Chromatogr. Sci. 25 (1987), S. 302—306 [1]
  8. Hulbert, A.J., Else, P.L. 1999. Membranes as Possible Pacemakers of Metabolism. J. Theor. Biol. 199:257–274.
  9. Hulbert, A.J., Faulks, S., Buttemer, W.A., Else, P.L. 2002. Acyl Composition of Muscle Membranes Varies with Body Size in Birds. J. Exp. Biol. 205:3561–3569.
  10. AJ Hulbert (2003). Life, death and membrane bilayers. The Journal of Experimental Biology 206 (Pt 14). с. 2303–11. PMID 12796449. doi:10.1242/jeb.00399. 
  11. Raynard, R.S., Cossins, A.R. 1991. Homeoviscous Adaptation and Thermal Compensation of Sodium Pump of Trout Erythrocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 260:R916–R924.