Послідовність Люка

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

В математиці, послідовностями Люка називають сімейство пар лінійних рекурентних послідовностей другого порядку, вперше розглянутих Едуардом Люка.

Послідовності Люка являють собою пари послідовностей и , що задовольняють одному і тому ж рекурентному співвідношенню з коефіцієнтами P і Q:

Приклади[ред.ред. код]

Деякі послідовності Люка носять власні імена:

Явні формули[ред.ред. код]

Характеристичним многочленом послідовностей Люка та є:

Його дискримінант вважається не рівним нулю. Корені характеристичного многочлена

и

можна використовувати для отримання явних формул:

та

Властивості[ред.ред. код]


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.