Правильний ікосаедр
Зміни шаблонів/файлів цієї версії очікують на перевірку.
Стабільна версія була перевірена 29 листопада 2022.


Правильний ікоса́едр (від грец. εικοσάς, «двадцять» і грец. —εδρον, «грань», «лице», «основа») — правильний опуклий многогранник, двадцятигранник, одне з Платонових тіл. Кожна з 20 граней є рівностороннім трикутником. Число ребер рівне 30, число вершин — 12.
Формули[ред. | ред. код]
Площа S, об'єм V ікосаедра з довжиною ребра a, а також радіуси вписаної і описаної куль обчислюються за формулами:
;
;
;
.
Декартові координати[ред. | ред. код]

Вершини ікосаедра з довжиною ребра 2 і центром в початку координат визначають такі декартові координати:
- (0, ±1, ±φ);
- (±1, ±φ, 0);
- (±φ, 0, ±1),
де φ = (1+√5)/2 є «золотим перетином». Зауважте, що ці набори вершин формують взаємно відцентровані і взаємно ортогональні золоті прямокутники.
Властивості[ред. | ред. код]
- Ікосаедр можна вписати в куб, при цьому його шість взаємно паралельних ребер розташовуватимуться відповідно на шести гранях куба, решта 24 ребра - усередині куба, а усі дванадцять вершин ікосаедра лежатимуть на шести гранях куба.
- В ікосаедр може бути вписаний тетраедр, притому чотири вершини тетраедра будуть суміщені з чотирма вершинами ікосаедра.
- Ікосаедр можна вписати в додекаедр, притому вершини ікосаедра будуть суміщені з центрами граней додекаедра.
- У ікосаедр можна вписати додекаедр, притому вершини додекаедра будуть суміщені з центрами граней ікосаедра.
У фізичному світі[ред. | ред. код]

- Капсиди багатьох вірусів (наприклад, бактеріофаги, мімівірус).
Див. також[ред. | ред. код]
Посилання[ред. | ред. код]
- The Uniform Polyhedra
- Virtual Reality Polyhedra The Encyclopedia of Polyhedra
- Paper Models of Polyhedra Many links
- Origami Polyhedra — Models made with Modular Origami
|
Основні опуклі правильні й однорідні політопи в розмірностях 2-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Родина | An | Bn | I₂(p) / Dn | E₆ / E₇ / E₈ / F₄ / G₂ | Hn | |||||||
Правильний многокутник | Правильний трикутник | Квадрат | p-кутник | Правильний шестикутник | Правильний п'ятикутник | |||||||
Однорідний многогранник | Правильний тетраедр | Правильний октаедр • Куб | Півкуб | Правильний додекаедр • Правильний ікосаедр | ||||||||
Однорідний 4-політоп | П'ятикомірник | 16-комірник • Тесеракт | Півтесеракт | 24-комірник | 120-комірник • 600-комірник | |||||||
Однорідний 5-політоп | Правильний 5-симплекс | 5-ортоплекс • 5-гіперкуб | 5-півгіперкуб | |||||||||
Однорідний 6-політоп | Правильний 6-симплекс | 6-ортоплекс • 6-гіперкуб | 6-півгіперкуб | 122 • 221 | ||||||||
Однорідний 7-політоп | Правильний 7-симплекс | 7-ортоплекс • 7-гіперкуб | 7-півгіперкуб | 132 • 231 • 321 | ||||||||
Однорідний 8-політоп | Правильний 8-симплекс | 8-ортоплекс • 8-гіперкуб | 8-півгіперкуб | 142 • 241 • 421 | ||||||||
Однорідний 9-політоп | Правильний 9-симплекс | 9-ортоплекс • 9-гіперкуб | 9-півгіперкуб | |||||||||
Однорідний 10-політоп | Правильний 10-симплекс | 10-ортоплекс • 10-гіперкуб | 10-півгіперкуб | |||||||||
Однорідний n-політоп | Правильный n-симплекс | n-ортоплекс • n-гіперкуб | n-півгіперкуб | 1k2 • 2k1 • k21 | n-п'ятикутний многогранник | |||||||
Topics: Родини політопів • Правильні політопи • Список правильних політопів і з'єднань |