Принцип найменшої дії

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Класична механіка

Другий закон Ньютона
Історія класичної механіки[en]

При́нцип найме́ншої ді́ї, у фізиці — стверджує, що із усіх можливих шляхів системи у конфігураційному просторі реалізується той, який відповідає мінімальному значенню дії.

Принцип найменшої дії є універсальним фізичним законом і використовується для виведення рівнянь руху.

Формулювання Гамільтона[ред.ред. код]

У формулюванні Гамільтона, також відомому під назвою принципу Гамільтона-Остроградського, дія дорівнює

,

де - функція Лагранжа. Розглядаються всі можливі траєкторії, які починаються в певній точці конфігураційного простору й закінчуються в момент часу .

Формулювання Мопертюї[ред.ред. код]

У випадку, коли функція Гамільтона явно не залежить від часу при виконанні закону збереження енергії, для знаходження енергії використовують функцію Лагранжа:

,

де є узагальнені координати a є узагальнені імпульси.

Через функцію Лагранжа можна записати функціонал дії у вигляді:

де означає редуковану (скорочену) дію.

Варіація функціоналу дії дає:

Оскільки варіація дії при постійній енергії приводить до:

тому варіація редукованої дії буде:

,

де є крива в фазовому просторі, що сполучає початкову та кінцеву точки руху системи. Оскільки узагальнена координата в загальному випадку є функція залежна від конкретиного шляху , тобто , тому узагальнений імпульс можна переписати як:

Тоді функція Гамільтона може бути подана у вигляді:

Оскільки швидкість переміщення по шляху є повна похідна, тому можливе розділення диференціалів і варіаційний принцип може бути записаний у вигляді:

Таким чином, траєкторія руху системи залежить від повної енергії . Враховуючи загальний вираз для функції Лагранжа , тоді підінтегральна функція приймає вигляд:

де i залежні від .

Доцільно привести більш наглядний математичний вираз для Принципу Моперт'юї у випадку однієї матеріальної частки:

оскільки кінетична енергія рівна постійній повній енергії мінус потенціальній енергії .


Дія дорівнює

.

Розглядаються траєкторії, що починаються в певній точці координаційного простору і закінчуються в іншій наперед вибраній точці координаційного простору незалежно від часу, якого вимагає подолання шляху між двома точками.

Варіація[ред.ред. код]

Для того, щоб знайти траєкторію системи у конфігураційному просторі, необхідно перебрати усі можливі траєкторії руху й вибрати той, для якого дія буде найменшою.

Робиться це таким чином.

Спочатку розглядається довільна траєкторія . Потім додається довільне мале відхилення (варіація) від цієї траєкторії , таке, щоб . Обчислюється дія для обох траєкторій і знаходиться різниця між отриманими значеннями.

.

Траєкторія буде реалізуватися тоді, коли ця різниця буде додатною.

Враховуючи те, що відхилення мале, функцію Лагранжа можна розкласти в ряд Тейлора, відкидаючи усі квадратичні й вищі члени.

Таким чином отримують диференційне рівняння Лагранжа (або Ейлера-Лагранжа)

,

справедливе тоді, коли всі сили в механічній системі потенціальні.

Ця процедура називається варіаційною процедурою. Вона є стандатним методом виведення диференційних рівнянь із інтегральних законів.

Див. також[ред.ред. код]

Джерела[ред.ред. код]