Розкриття невизначеностей — методи обчислення границьфункцій, заданих формулами, які внаслідок формальної підстановки в них граничних значень аргументу втрачають сенс, тобто переходять у вирази на зразок:
за якими неможливо з'ясувати, існують чи ні шукані границі, не кажучи вже про знаходження їх значень, якщо вони існують.
Найпотужнішим методом є правило Лопіталя, однак і воно не у всіх випадках дозволяє обчислити границю. До того ж безпосередньо його можна застосувати тільки до другого і третього з перерахованих типів невизначеностей, тобто відношень, і щоб розкрити інші типи, їх треба спочатку звести до одного з цих.
Також для обчислення границь часто використовують розкладання виразів, що входять у досліджувану невизначеність, у ряд Тейлора в околі граничної точки. Для розкриття невизначеностей типів , , користуються таким прийомом: знаходять границю (натурального) логарифма виразу, що містить дану невизначеність. Як наслідок, тип невизначеності змінюється. Після знаходження границі від неї беруть експоненту.
Для розкриття невизначеностей типу використовують такий алгоритм:
Виявлення старшого степеня змінної;
Ділення на цю змінну як чисельника, так і знаменника.
Для розкриття невизначеностей типу існує такий алгоритм:
Розкладання на множники чисельника і знаменника;
Скорочення дробу.
Для розкриття невизначеностей типу іноді зручно застосувати таке перетворення:
нехай і ;
.
Невизначеності цього типу можна розкрити з використанням асимптотичних розкладів зменшуваного і від'ємника, при цьому нескінченно великі члени одного порядку мають знищуватися.
При розкритті невизначеностей також застосовуються чудові границі та їх наслідки.
— приклад[1] невизначеності типу . За правилом Лопіталя. Другий спосіб — додати і відняти в чисельнику і двічі застосувати теорему Лагранжа, до функцій і відповідно:
тут c, d лежать між a і x, тому вони прямують до a при x, що прямує до a, звідси отримуємо ту ж границю, що й у першому способі.