Розмірність Лебега

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Розмі́рність Ле́бега або топологічна розмірність — розмірність, визначена за допомогою покриттів, найважливіший інваріант топологічного простору. Розмірність Лебега простору , зазвичай позначається .

Визначення[ред.ред. код]

Для метричних просторів[ред.ред. код]

Для компактного метричного простору розмірність Лебега визначається як найменше ціле число n із такою властивістю, що при будь-якому існує скінченне відкрите -покриття , що має кратність ≤ n + 1;

При цьому

  • -покриттям метричного простору називається покриття, усі елементи якого мають діаметр , а
  • кратністю скінченного покриття простору називається таке найбільше ціле число , що існує точка простору , що втримується в k елементах даного покриття.

Для топологічних просторів[ред.ред. код]

Для довільного нормального (зокрема, для метризовного) простору розмірністю Лебега називається найменше ціле число таке, що до всякого скінченного відкритого покриття простору існує вписане в нього (скінченне відкрите) покриття кратності n+1.

При цьому покриття називається вписаним у покриття , якщо кожний елемент покриття є підмножиною хоча б одного елемента покриття .

Приклади[ред.ред. код]

Історія[ред.ред. код]

Вперше топологічна розмірність введена Анрі Лебегом. Він висловив гіпотезу, що розмірність -мірного куба дорівнює . Л. Брауер вперше довів це. Точне визначення інваріанту (для класу метричних компактів) дав П. С. Урисон.

Див. також[ред.ред. код]