Перейти до вмісту

Ромбоікосододекаедр

Очікує на перевірку
Матеріал з Вікіпедії — вільної енциклопедії.
Ромбоікосододекаедр
Розгортка ромбоікосододекаедра
Тривимірна модель ромбоікосододекаедра

Ромбоікосододека́едр[1][2][3] — напівправильний багатогранник, який складається з 12 правильних п'ятикутників, 30 квадратів і 20 трикутників, архімедове тіло. Має ікосаедричний тип симетрії. В кожній з вершин сходяться трикутник, п'ятикутник і 2 квадрати.

Ромбоікосододекаедр можна подати як додекаедр, зрізаний за вершинами і ребрами (при цьому трикутники відповідають вершинам додекаедра, а квадрати — ребрам), або як ікосаедр, зрізаний так само (при цьому п'ятикутники відповідають вершинам ікосаедра, а квадрати — ребрам), або ж як зрізаний ікосододекаедр, чим він по суті і є.

Декартові координати

[ред. | ред. код]

Декартові координати вершин ромбоікосододекаедра з довжиною ребра 2 із центром у початку координат є парними перестановками з:[4]

(± 1, ± 1, ± φ 3),
φ 2, ± φ, ± 2 φ),
(± (2+ φ), 0, ± φ 2), де φ = 1 + 5/2 являє собою золотий перетин . Отже, радіус описаної сфери цього ромбоікосододекаедра дорівнює відстані цих точок від початку координат, а саме φ6+2 = 8φ+7 для довжини ребра 2. Для одиничної довжини ребра, зменшивши R удвічі, маємо
R = 8φ+7/2 = 11+45/2 ≈ 2,233.

Ортогональні проєкції

[ред. | ред. код]
Ортогональна проєкція в Геометрії (1543) Августина Гіршфоґеля

Ромбоікосододекаедр має шість особливих ортогональних проєкцій, центрованих на вершині, на ребрах двох типів і гранях трьох типів: трикутнику, квадраті та п'ятикутнику. Останні дві відповідають площинам Коксетера А2 і Н2.

Ортогональні проєкції
У центрі Вершина Ребро

3-4

Ребро

5-4

Квадратна грань Трикутна грань П'ятикутна грань
Суцільна
Каркасна
Проєктивна

симетрія

[2] [2] [2] [2] [6] [10]
Дуальне

зображення

Сферична мозаїка

[ред. | ред. код]

Ромбоікосододекаедр також можна зобразити у вигляді сферичної мозаїки та проєктувати на площину за допомогою стереографічної проєкції . Ця проєкція є конформною, зберігаючи кути, але не площі та довжини. Прямі лінії на кулі проєктуються на площину як дуги кола.


У центрі —п'ятикутник

У центрі — трикутник

У центрі — квадрат
Ортогональна проєкція Стереографічні проєкції

Пов'язані многогранники

[ред. | ред. код]
Сімейство однорідних ікосаедричних багатогранників
Симетрія: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Двоїсті до однорідних багатогранників
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. Веннинджер, 1974, с. 20, 38.
  2. Энциклопедия элементарной математики, 1963, с. 437, 435.
  3. Люстерник, 1956, с. 184.
  4. Weisstein, Eric W. Icosahedral group(англ.) на сайті Wolfram MathWorld.

Література

[ред. | ред. код]