Ромбоікосододекаедр

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Ромбоікосододекаедр
Розгортка ромбоікосододекаедра
Тривимірна модель ромбоікосододекаедра

Ромбоікосододека́едр[1][2][3] — напівправильний багатогранник, який складається з 12 правильних п'ятикутників, 30 квадратів і 20 трикутників, архімедове тіло. Має ікосаедричний тип симетрії. В кожній з вершин сходяться трикутник, п'ятикутник і 2 квадрати.

Ромбоікосододекаедр можна подати як додекаедр, зрізаний за вершинами і ребрами (при цьому трикутники відповідають вершинам додекаедра, а квадрати — ребрам), або як ікосаедр, зрізаний так само (при цьому п'ятикутники відповідають вершинам ікосаедра, а квадрати — ребрам), або ж як зрізаний ікосододекаедр, чим він по суті і є.

P4-A11-P5.gif

Декартові координати[ред. | ред. код]

Декартові координати вершин ромбоікосододекаедра з довжиною ребра 2 із центром у початку координат є парними перестановками з:[4]

(± 1, ± 1, ± φ 3),
φ 2, ± φ, ± 2 φ),
(± (2+ φ), 0, ± φ 2), де φ = 1 + 52 являє собою золотий перетин . Отже, радіус описаної сфери цього ромбоікосододекаедра дорівнює відстані цих точок від початку координат, а саме φ6+2 = 8φ+7 для довжини ребра 2. Для одиничної довжини ребра, зменшивши R удвічі, маємо
R = 8φ+72 = 11+452 ≈ 2,233.

Ортогональні проєкції[ред. | ред. код]

Ортогональна проєкція в Геометрії (1543) Августина Гіршфоґеля

Ромбоікосододекаедр має шість особливих ортогональних проєкцій, центрованих на вершині, на ребрах двох типів і гранях трьох типів: трикутнику, квадраті та п'ятикутнику. Останні дві відповідають площинам Коксетера А2 і Н2.

Ортогональні проєкції
У центрі Вершина Ребро

3-4

Ребро

5-4

Квадратна грань Трикутна грань П'ятикутна грань
Суцільна Polyhedron small rhombi 12-20 from blue max.png Polyhedron small rhombi 12-20 from yellow max.png Polyhedron small rhombi 12-20 from red max.png
Каркасна Dodecahedron t02 v.png Dodecahedron t02 e34.png Dodecahedron t02 e45.png Dodecahedron t02 f4.png Dodecahedron t02 A2.png Dodecahedron t02 H3.png
Проєктивна

симетрія

[2] [2] [2] [2] [6] [10]
Дуальне

зображення

Dual dodecahedron t02 v.png Dual dodecahedron t02 e34.png Dual dodecahedron t02 e45.png Dual dodecahedron t02 f4.png Dual dodecahedron t02 A2.png Dual dodecahedron t02 H3.png

Сферична мозаїка[ред. | ред. код]

Ромбоікосододекаедр також можна зобразити у вигляді сферичної мозаїки та проєктувати на площину за допомогою стереографічної проєкції . Ця проєкція є конформною, зберігаючи кути, але не площі та довжини. Прямі лінії на кулі проєктуються на площину як дуги кола.

Uniform tiling 532-t02.png Rhombicosidodecahedron stereographic projection pentagon'.png
У центрі —п'ятикутник
Rhombicosidodecahedron stereographic projection triangle.png
У центрі — трикутник
Rhombicosidodecahedron stereographic projection square.png
У центрі — квадрат
Ортогональна проєкція Стереографічні проєкції

Примітки[ред. | ред. код]

Література[ред. | ред. код]