Рівняння Гінзбурга — Ландау

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Рівняння Гінзбурга — Ландау рівняння, які описують стан надпровідника в зовнішньому магнітному полі.

В теорії ГінзбургаЛандау[1] надпровідник описується параметром порядку ψ, який вважається малим, а тому розглядається область в околиці фазового переходу між надпровідним і звичайним станом (у звичайному стані параметр порядку дорівнює нулю).

Рівняння мають такий вигляд:

,[2]

де  — приведена стала Планка, m — маса електрона, c — швидкість світла,  — векторний потенціал, a та b — певні сталі, які характеризують надпровідник.

Рівнянна нагадує рівняння Шредінгера, але для частинки з масою й зарядом вдвічі більшими за масу й заряд електрона (куперівська пара).

Крім наведеного рівняння величина магнітного поля визначається із звичного рівняння електродинаміки

,

де густина струму визначається виразом

.

Вільна енергія[ред.ред. код]

Рівняння Гінзбурга — Ландау виводяться із принципу мінімальності вільної енергії термодинамічної системи у рівноважному стані. Виражена через параметр порядку, вільна енергія має такий вигляд:

Теорія Гінзбурга — Ландау дозволяє розраховувати критичні магнітні поля, проникнення магнітного поля в надпровідник тощо.

Граничні умови[ред.ред. код]

На межі між надпровідником і речовиною в нормальному стані параметр порядку повинен задовільняти граничним умовам

,

де  — орт нормалі до поверхні розділу.

Література[ред.ред. код]


Фізика Це незавершена стаття з фізики.
Ви можете допомогти проекту, виправивши або дописавши її.

Примітки[ред.ред. код]

  1. Віталій Лазаревич Гінзбург отримав Нобелівську премію в 2003 році за свій вклад у розвиток фізики надпровідників
  2. Формули на цій сторінці записані в системі СГС (СГСГ). Для перетворення в систему СІ дивись Правила переводу формул із системи СГС в систему СІ.