Теорія множин Цермело — Френкеля

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Теорія множин Цермело — Френкеля з аксіомою вибору (позначається ZFC) — найпоширеніша аксіоматика теорії множин, і, через це, найпоширеніша основа математики.

ZFC містить єдине примітивне онтологічне поняття — множина, та єдине онтологічне припущення, що всі об'єкти в досліджуваному просторі (наприклад, всі математичні об'єкти) є множинами.

Вводиться єдине бінарне відношення — приналежність до множини; позначає що множина є елементом множини , та записується як .

ZFC є теорією першого порядку; в ZFC містяться аксіоми, в яких використовується логіка першого порядку. Ці аксіоми описують: порівняння, існування, побудову та впорядкування множин.

Передумови створення[ред. | ред. код]

Аксіоматична теорія множин — напрям у математичній логіці, присвячений вивченню фрагментів змістовної теорії множин методами математичної логіки. З цією метою фрагменти теорії множин подають у вигляді аксіоматичної теорії. В основі сучасної теорії множин лежить система аксіом, які приймають без доведення і з яких виводять усі теореми теорії множин. Передумовами створення такої теорії стало відкриття деяких парадоксів (антиномій, суперечностей) так званої «наївної» теорії множин. Серед таких парадоксів найбільш відомими є парадокси Кантора і Рассела.

Першою аксіоматикою такого роду була система Z Цермело (E. Zermelo, 1908). Однак у цій системі неможливо було природним чином формалізувати деякі розділи математики, і А.Френкель (A. Frenkel, 1922) запропонував доповнити систему Z новим принципом, який назвав аксіомою підстановки. Отриману систему називають системою аксіом Цермело — Френкеля і позначають ZF. Ця система аксіом містить єдине примітивне онтологічне (фундаментальне) поняття — множина, та єдине онтологічне припущення, що всі досліджувані об’єкти є множинами. Запроваджено єдине бінарне відношення приналежності до множини.

Аксіоми ZFC[ред. | ред. код]

Порівняння[ред. | ред. код]

Аксіома екстенсіональності (об'ємності) (Z1)[ред. | ред. код]

Дві множини рівні тоді й тільки тоді, коли вони мають одні й ті ж елементи.

Існування[ред. | ред. код]

Аксіома нескінченності (Z7)[ред. | ред. код]

Існує така множина A, що включає в себе пусту множину {} та для будь-якого належного їй елемента B включає також і множину, сформовану як об'єднання B та її синґлетону {B}.

Аксіома порожньої множини[ред. | ред. код]

Існує множина без елементів.

Таку множину зазвичай позначають як ∅ або {} та називають порожньою множиною.

Побудови[ред. | ред. код]

Аксіома пари (Z2)[ред. | ред. код]

Для будь-яких множин A та B існує множина C така, що A та B є її єдиними елементами. Множина C позначається {A, B} і називається невпорядкованою парою A та B.

Тобто, якщо A = B, то існує множина C така, що вона складається з одного елемента {A, A} = {A} (який має назву синглетона).

Аксіома булеана (Z4)[ред. | ред. код]

Для будь-якої множини А існує множина B, елементами якої є ті й тільки ті елементи що є підмножинами A.

Якщо ввести відношення підмножини , то формулу можна спростити:

Множину B називають булеаном множини A та позначають .

Аксіома об'єднання (Z5)[ред. | ред. код]

Для двох множин існує третя, яка включає в себе всі елементи обох, і тільки їх.

З аксіоми прямо випливає, що об'єднання множин також є множиною. Множина B називається об'єднанням A, і позначається A.

Схема специфікації (аксіома виділення) (Z3)[ред. | ред. код]

Для будь-якої множини А і властивості P існує множина B, елементами якої є ті й тільки ті елементи множини А, які маю властивість P.

Для кожної такої властивості P (предиката, що не використовує символ B), існує окрема аксіома виділення. Тому комплект таких аксіом називають схемою.

Схема перетворення (аксіома підстановки) (ZF)[ред. | ред. код]

Нехай А - множина, і P(x,y) - предикат. Тоді якщо для кожного x існує єдиний y, такий що P(x,y) істинний, тоді існує множина всіх y, для яких знайдеться такий x ∈ A, що P(x,y) істинний.

Впорядкування[ред. | ред. код]

Аксіома регулярності (ZF)[ред. | ред. код]

В будь-якій непорожній множині А є елемент B, що перетин А та B є порожньою множиною.

Якщо ввести операцію перетину множин , то формулу можна спростити:

Аксіома вибору (Z6)[ред. | ред. код]

Для довільного сімейства непорожніх множин, що не перетинаються, існує множина, яка має рівно один спільний елемент з кожною множиною даного сімейства, навіть якщо множин у сімействі нескінченно багато і невизначено правило вибору елемента з кожної множини.

Надлишковість[ред. | ред. код]

Див. також[ред. | ред. код]

Джерела[ред. | ред. код]