Принцип еквівалентності: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
SieBot (обговорення | внесок)
м робот додав: pt:Princípio da Equivalência
Xqbot (обговорення | внесок)
м робот змінив: pt:Princípio da equivalência; косметичні зміни
Рядок 6: Рядок 6:


== Математичне формулювання ==
== Математичне формулювання ==
Подивимось, як цей принцип відображається у формулах. Для цього розглянемо ''[[світова лінія|світову лінію]]'' [[матеріальна точка|матеріальної точки]] з [[маса|масою]] <math>m</math>. Натуральний параметр цієї лінії позначимо <math>s</math>, він пропорційний власному часу матеріальної точки <math>\tau</math>:
Подивимось, як цей принцип відображається у формулах. Для цього розглянемо ''[[світова лінія|світову лінію]]'' [[матеріальна точка|матеріальної точки]] з [[маса|масою]] <math>m</math>. Натуральний параметр цієї лінії позначимо <math>s</math>, він пропорційний власному часу матеріальної точки <math>\tau</math>:
: <math>(1) \qquad s = c \tau</math>
: <math>(1) \qquad s = c \tau</math>
де <math>c</math> - [[швидкість світла]]. Різниця <math>d s</math> натурального параметра в двох близьких точках чотиривимірного простору-часу називається просторово-часовим інтервалом. Він повязаний з приростами координат наступною формулою:
де <math>c</math> - [[швидкість світла]]. Різниця <math>d s</math> натурального параметра в двох близьких точках чотиривимірного простору-часу називається просторово-часовим інтервалом. Він повязаний з приростами координат наступною формулою:
Рядок 33: Рядок 33:
Ясно, що відокремити силу тяжіння від сил інерції важко, особливо в нестаціонарному гравітаційному полі.
Ясно, що відокремити силу тяжіння від сил інерції важко, особливо в нестаціонарному гравітаційному полі.


Проте ми можемо окремо говорити про [[Сила інерції|сили інерції]] у випадку плоского простору Мінковського, коли [[Нульовий тензор Рімана|тензор Рімана тотожно дорівнює нулю]]. Також ми можемо говорити тільки про силу гравітації і відсутність сил інерції, якщо метричний тензор не залежить від часу і на нескінченності переходить в постійний тензор Мінковського:
Проте ми можемо окремо говорити про [[Сила інерції|сили інерції]] у випадку плоского простору Мінковського, коли [[Нульовий тензор Рімана|тензор Рімана тотожно дорівнює нулю]]. Також ми можемо говорити тільки про силу гравітації і відсутність сил інерції, якщо метричний тензор не залежить від часу і на нескінченності переходить в постійний тензор Мінковського:
: <math>(11) \qquad (g_{ij}) = \begin{vmatrix} 1& 0 & 0 & 0 \\ 0 & -1 &0&0 \\ 0 & 0 & -1 &0 \\0 & 0 & 0 & -1 \end{vmatrix}</math>
: <math>(11) \qquad (g_{ij}) = \begin{vmatrix} 1& 0 & 0 & 0 \\ 0 & -1 &0&0 \\ 0 & 0 & -1 &0 \\0 & 0 & 0 & -1 \end{vmatrix}</math>


{{physics-stub}}
{{physics-stub}}
[[категорія:Теорія відносності]]
[[Категорія:Теорія відносності]]


[[ar:مبدأ التكافؤ]]
[[ar:مبدأ التكافؤ]]
Рядок 56: Рядок 56:
[[nl:Equivalentieprincipe]]
[[nl:Equivalentieprincipe]]
[[no:Ekvivalensprinsippet]]
[[no:Ekvivalensprinsippet]]
[[pt:Princípio da Equivalência]]
[[pt:Princípio da equivalência]]
[[ro:Principiul echivalenţei]]
[[ro:Principiul echivalenţei]]
[[ru:Принцип эквивалентности сил гравитации и инерции]]
[[ru:Принцип эквивалентности сил гравитации и инерции]]

Версія за 17:29, 15 жовтня 2009

Принцип еквівалентності - основне твердження загальної теорії відносності, за яким спостерігач не може жодним чином відрізнити дію гравітаційного поля від сили інерції, що виникає в системі відліку, яка рухається з прискоренням.

Принцип еквівалентності справедливий завдяки рівності гравітаційної та інерційної маси.

Розрізняють слабкий принцип еквівалентності та сильний принцип еквівалентності. Різниця між ними в тому, що слабкий принцип - це локальне твердження, а сильний принцип - це твердження, що стосується будь-якої точки простору часу, тобто будь-якого місця у Всесвіті й будь-якого часу в минулому чи майбутньому.

Математичне формулювання

Подивимось, як цей принцип відображається у формулах. Для цього розглянемо світову лінію матеріальної точки з масою . Натуральний параметр цієї лінії позначимо , він пропорційний власному часу матеріальної точки :

де - швидкість світла. Різниця натурального параметра в двох близьких точках чотиривимірного простору-часу називається просторово-часовим інтервалом. Він повязаний з приростами координат наступною формулою:

Одиничний дотичний вектор до світової лінії є справжнім чотиривектором; він виражається через чотиривектор швидкості :

Геодезична кривина світової лінії також є справжнім чотиривектором, і дорівнює:

В спеціальній теорії відносності прискорення матеріальної точки було повязане із силою наступною формулою:

Оскільки в спеціальній теорії відносності символи Крістофеля дорівнюють нулю, то ми можемо замість другої похідної по часу підставити вектор кривини з відповідним коефіцієнтом, і узагальнити (5) до наступної тензорної формули:

Всі справжні сили, окрім сили тяжіння і сил інерції, (наприклад електромагнітні сили) зібрані в векторі . Мимохідь можна побачити такий цікавий геометричний факт: геодезична кривина світової лінії (розмірність обернена до відстані) дорівнює силі, поділеній на енергію спокою:.

Сила тяжіння і сили інерції описуються одним доданком в формулі (6), повязаним із символами Крістофеля. Перепишемо (6), перенісши цей доданок в праву частину рівняння, і позначимо цю несправжню силу (еф з тільдою):

Звернемо увагу, що маса в лівій частині формули (6) винесена за дужки, а тому при розритті дужок буде однаковою інерційна маса, яка стоїть множником біля прискорення в даній системі координат:

і гравітаційна маса, яка стоїть множником в формулі для гравітаційної сили:

Ясно, що відокремити силу тяжіння від сил інерції важко, особливо в нестаціонарному гравітаційному полі.

Проте ми можемо окремо говорити про сили інерції у випадку плоского простору Мінковського, коли тензор Рімана тотожно дорівнює нулю. Також ми можемо говорити тільки про силу гравітації і відсутність сил інерції, якщо метричний тензор не залежить від часу і на нескінченності переходить в постійний тензор Мінковського: