Теорема про базисний мінор
Перейти до навігації
Перейти до пошуку
Теорема про базисний мінор[ред. | ред. код]
- Рядки ненульової матриці (існує не нульовий елемент) на яких будується її базисний мінор є лінійно незалежними.
- Всі інші рядки матриці лінійно виражаються через них.
Доведення[ред. | ред. код]
- Якби базисні рядки були лінійно залежними то з допомогою еквівалентних перетворень можна було б одержати нульовий рядок, що суперечить тому, що базовий мінор не дорівнює нулю.
- За допомогою довільного не базисного рядка (нехай його номер ) та довільного стовбця матриці (нехай його номер ) утворимо оточуючий мінор для базисного. Він буде дорівнювати нулю. Розклавши його -му стовпцю (теорема Лапласа), отримаємо:
оскільки алгебраїчне доповнення рівне нашому базовому мінору з точністю до знака, отже тому розділимо весь вираз на нього:
Отже -ий рядок є лінійною комбінацією базових рядків з коефіцієнтами .
Див. також[ред. | ред. код]
Джерела[ред. | ред. код]
- Гантмахер Ф. Р. Теория матриц. — 2 изд. — Москва : Наука, 1967. — 576 с. — ISBN 5-9221-0524-8.(рос.)