Тисячокутник

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Правильний тисячокутник
Візуально цілий правильний тисячокутник неможливо відрізнити від круга. На малюнку — частина тисячокутника у 200-кратному збільшенні порівняно з цілим тисячокутником угорі

Тисячоку́тник (хіліаго́н[1]; з дав.-гр. χῑλιαγωνον): у геометрії — багатокутник (полігон) з 1000 сторін. Деякі філософи використовували його для ілюстрації питань, пов'язаних з мисленням.

Правильний тисячокутник позначається символом Шлефлі {1000} і може бути побудований як квазіправильний зрізаний 500-кутник — t{500}, у якому чергуються два типи сторін.

Властивості[ред. | ред. код]

Кожен внутрішній кут правильного тисячокутника складає 179.64°. Площа правильного тисячокутника зі стороною довжиною a визначається як

Цей результат відрізняється від площі описаного навколо нього кола менше ніж на чотири мільйонних.

Оскільки 1000 = 23 × 53, кількість сторін тисячокутника не належить ні до чисел Ферма, ні до степенів 2. Таким чином, правильний тисячокутник не належить до конструйовних багатокутників.

Філософське застосування[ред. | ред. код]

Рене Декарт використовує тисячокутник як приклад у своїй «Шостій медитації» для демонстрації різниці між чистим інтелектом та уявою[2].

Філософ П'єр Гассенді, сучасник Декарта, критикує його інтерпретацію, вважаючи, що хоча Декарт може уявити тисячокутник, він не може його зрозуміти[3].

Натхнені прикладом Декарта з тисячокутником, Родерік Чізем[en] та деякі інші філософи XX століття використовують подібні приклади для висловлення подібних думок. «Ряба курка» Чізема, яка не повинна мати визначену кількість плям, щоб її можна було успішно уявити, вірогідно, найвідоміша з них[4].

Хіліаграмма[ред. | ред. код]

Хіліаграмма — 1000-стороння зірка. Існує 199 правильних форм[5], поданих символом Шлефлі у вигляді {1000/n}, де n — ціле число між 2 і 500, що є взаємно простим з 1000.

Примітки[ред. | ред. код]

  1. Черняков, А. Г. Онтология времени : Бытие и время в философии Аристотеля, Гуссерля и Хайдеггера : [рос.]. — СПб. : Высшая религиозно-философская школа, 2001. — С. 167 (прим.). — ISBN 5-900291-21-9.
  2. Descartes, René. Meditation VI : [англ.].
  3. Sepkoski, David. Nominalism and constructivism in seventeenth-century mathematical philosophy // Historia Mathematica : [англ.]. — 2005. — Vol. 32. — P. 33—59. — DOI:10.1016/j.hm.2003.09.002.
  4. Chisholm, Roderick. The Problem of the Speckled Hen // Mind : [англ.]. — 1942. — Vol. 51. — P. 368—373.
  5. 199 = 500 випадків – 1 (випуклий) − 100 (кратних 5) − 250 (кратних 2) + 50 (кратних 2 та 5)

Посилання[ред. | ред. код]

  • Finkel, Benjamin Franklin. Chiliagon // A Mathematical Solution Book Containing Systematic Solutions to Many of the Most Difficult Problems : Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions : [англ.]. — Kibler & Company, 1888. — P. 195.