Формула Фейнмана — Каца

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Формула Фейнмана-Каца, названа на честь Річарда Фейнмана і Марка Каца — формула взаємозв'язку між рівняннями частинних похідних і стохастичними процесами. З допомогою цієї формули можна розв'язувати певні типи РЧП за допомогою симуляції траєкторій стохастичних процесів. Навпаки, стохастичні рівняння частинних похідних можна розв'язувати методами звичайних РЧП без залучення стохастичних методів.

Формулювання[ред.ред. код]

Нехай маємо РЧП:

і умову

Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \ f(x,T)=\psi(x) }

де Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \mu,\ \sigma,\ \psi} - відомі функції, Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): \ T  — параметр і Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): \ f невідома функція. Це рівняння відоме під назвою рекурентне рівняння Колмогорова (одновимірне). Тоді формула Фейнмана-Каца полягає в тому, що розв'язок цієї задачі записується як математичне сподівання:

Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \ f(x,t) = E[ \psi(X_T) | X_t=x ] }

де Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): \ X  — процес Іто, що описується рівнянням

Неможливо розібрати вираз (Помилка перетворення. Сервер ("https://uk.wikipedia.org/api/rest_") повідомив: "Cannot get mml. Server problem."): {\displaystyle dX=\mu (X,t)\,dt+\sigma (X,t)\,dW,}

де Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \ W(t)}  — Вінерівський процес (іноді можна зустріти назву Броунівський рух) і початкова умова для Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \ X(t)} є Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \ X(0) = x} . Це математичне сподівання можна обчислити (наближено з певною точністю) використовуючи Метод Монте-Карло чи квазі Монте-Карло методи.

Доведення[ред.ред. код]

Застосувавши лему Іто до невідомого процесу Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \displaystyle f(X_t,t)} можна отримати

Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle df=\left(\mu(x,t)\frac{\partial f}{\partial x}+\frac{\partial f}{\partial t}+\frac{1}{2}\sigma^2(x,t)\frac{\partial^2 f}{\partial x^2}\right)\,dt+\sigma(x,t)\frac{\partial f}{\partial x}\,dW.}

Вираз у перших дужках є РЧП згадане вище і тому цей вираз рівний нулю за припущенням. Тепер проінтегрувавши обидві частини рівняння отримаємо

Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle f(X_T,T)-f(x,t)=\int_t^T df=\int_t^T\sigma(x,t)\frac{\partial f}{\partial x}\,dW.}

Після тривіальних перетворень візьмемо математичне сподівання обидвох частин рівності:

Неможливо розібрати вираз (Помилка перетворення. Сервер ("https://uk.wikipedia.org/api/rest_") повідомив: "Cannot get mml. Server problem."): {\displaystyle f(x,t)={\textrm {E}}\left[f(X_{T},T)\right]-{\textrm {E}}\left[\int _{t}^{T}\sigma (x,t){\frac {\partial f}{\partial x}}\,dW\right].}

Оскільки матсподівання інтеграла Іто по Вінерівському процесі Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle \displaystyle W} дорівнює нулю отримаємо бажаний результат:

Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle f(x,t)=\textrm{E}\left[f(X_T,T)\right]=\textrm{E}\left[\psi(X_T)\right]=\textrm{E}\left[\psi(X_T)|X_t=x\right].}

Див. також[ред.ред. код]

Література[ред.ред. код]

  • Оксендаль Б. Стохастические дифференциальные уравнения. Введение в теорию и приложения. — М. : Мир, 2003. — 408 с.
  • Protter P. E. Stochastic Integration and Differential Equations. — Springer, 2005.
  • Simon B. Functional Integration and Quantum Physics. — Academic Press, 1979.