Цілозамкнута область

Матеріал з Вікіпедії — вільної енциклопедії.
(Перенаправлено з Цілозамкнена область)
Перейти до навігації Перейти до пошуку

В комутативній алгебрі, цілозамкнутою областю A називається область цілісності яка є рівною цілому замиканню її поля часток.

Приклади[ред. | ред. код]

Багато важливих областей цілісності є цілозамкнутими:

Нехай Q — поле часток факторіального кільця A i елемент — цілий над A : де . Припустимо, що a i b не мають спільних дільників (за винятком оборотних елементів). Але , отже, ділиться на b, що можливо лише якщо b є оборотним. Тому, , і звідси .
  • Будь-яка область найбільших спільних дільників (зокрема, кільце Безу чи кільце нормування).
  • Будь-яке кільце Дедекінда є цілозамкнутою областю.
  • Довільна симетрична алгебра над полем (оскільки кожна симетрична алгебра є є ізоморфною кільцю многочленів від кількох змінних над полем).
  • Регулярні локальні кільця є цілозамкнутими.
  • Приклад області цілісності, що не є цілозамкнутою: нехай k — поле і (A є підалгебра породжена t2 і t3.) A і B мають однакове поле часток, і B є цілим замиканням кільця A (B є факторіальним кільцем) і тому, область A не є цілозамкнутою. Цей приклад пов'язаний з фактом, що плоска крива має особливу точку на початку координат.

Властивості[ред. | ред. код]

  • Нехай A — цілозамкнута область. Для довільної мультиплікативної системи локалізація є цілозамкнутою областю.
Ототожнимо з підкільцем поля часток . Припустимо,що є цілим над , тобто де (тут очевидно, для всіх можна вибрати спільний знаменник). Тоді звідки i
  • Для область цілісності A наступні умови є еквівалентними:
  1. A є цілозамкнутою;
  2. Ap (локалізація A по простому ідеалу p) є цілозамкнутою для кожного простого ідеалу p;
  3. Am є цілозамкнутою для кожного максимального ідеалу m.
Те що локалізації по максимальних і простих ідеалах є областями цілісності є наслідком попередньої властивості. Залишається лише довести, що якщо всі локалізації A по максимальних ідеалах є цілозамкнутими, то і A є цілозамкнутою
Нехай елемент є цілим над A. Тоді він є цілим над всіма Am для всіх максимальних ідеалів, звідки . Тож залишається довести, що для довільної області цілісності .
Нехай . Покладемо . Ця множина є ідеалом в A і для кожного максимального ідеала m в кільці A оскільки може бути записаним як де , звідки . Тому, , отже, i .
  • Натомість цілозамкнутість може не зберігатися при переході до факторкільця, наприклад кільце Z[t]/(t2+4) не є цілозамкнутим.
  • Область цілісності є цілозамкнутою якщо і тільки якщо вона рівна перетину всіх кілець нормування, що містять її [1].
  • Нехай A — цілозамкнута область з полем часток Q і нехай Lскінченне розширення поля Q. Тоді елемент є цілим над A, якщо і тільки якщо його мінімальний многочлен над Q має коефіцієнти у полі A.[2] Звідси випливає зокрема, що цілий елемент над цілозамкнутою областю A має мінімальний многочлен над A. Це твердження є сильнішим, ніж те, що будь-яка цілий елемент є коренем многочлена зі старшим коефіцієнтом рівним 1 і може бути неправильним без вимоги цілозамкнутості (наприклад для кільця )
Розглянемо розширення , таке що для деяких . Оскільки є незвідним, i цей ізоморфізм є тотожним на . Отже, кожен елемент є також цілим над A. Але коефіцієнти є многочленами від з цілими коефіцієнтами (елементарними симетричними многочленами), отже, вони також цілі над A. Оскільки A є цілозамкнутою областю, то всі ці коефіцієнти належать A.
  • Для цілозамкнутої області A з полем часток Q справедливою є версія леми Гауса: нехай  — многочлен, старший коефіцієнт якого рівний 1. Нехай також де і старший коефіцієнт рівний 1. Тоді
Достатньо довести це твердження для незвідного g. Розглянемо будь-який його корінь a в деякому розширенні поля Q. Оскільки , то a є цілим над A. Але (оскiльки g є незвiдним), отже, згідно попередньої властивості, .
  • Якщо A — цілозамкнута область то кільце многочленів теж буде цілозамкнутою областю.
Нехай є цілим елементом над . Тоді він очевидно є також цілим над . Але є кільцем головних ідеалів і тому цілозамкнутим. Тож . Залишається довести, що для цілозамкнутої області кільце є цілозамкнутим у .
Припустимо, що є цілим елементом над тобто , для деяких . Нехай — ціле число більше, ніж степінь і всі степені . Позначимо . Якщо позначити , то є коренем многочлена . Зауважимо що і має старший коефіцієнт рівний 1. Оскільки і і мають старші коефіцієнти 1, то з леми Гауса отримуємо, що коефіцієнти многочлена належать A і теж саме є правильним для многочлена , що завершує доведення.
(i) G є групою A-автоморфізмів кільця S.
(ii) Прості ідеали P' and P'' кільця S лежать над спільним простим ідеалом P' кільця R (тобто ) тоді і тільки тоді, коли існує
  • Теорема про спуск. Нехай A цілозамкнута область і S — область цілісності, що є цілим розширенням A. Нехай — спадна послідовність простих ідеалів кільця A і P'1 — простий ідеал кільця S, для якого . Тоді існує спадна послідовність простих ідеалів кільця S, для яких .
  • Нехай A — цілозамкнута область з полем часток Q і L — скінченне сепарабельне розширення поля Q. Нехай S є цілим замиканням області A в полі L. Тоді існує базис поля L над Q, для якого . Якщо A є кільцем головних ідеалів, то можна вибрати такий базис щоб в цій формулі виконувалася рівність.

Нетерова цілозамкнута область[ред. | ред. код]

Нехай A є нетеровою областю цілісності. Тоді A є цілозамкнутою, якщо і тільки якщо виконуються умови:

  • A є перетином всіх локалізацій по простих ідеалах висоти 1 і
  • локалізації по простих ідеалах висоти 1 є кільцями дискретного нормування.

Для нетерової локальної області A розмірності один, тоді еквівалентними є твердження:

Нетерова область цілісності є кільцем Круля тоді і тільки тоді, коли вона є цілозамкнутою.

Нехай A — нетерова цілозамкнута область з полем часток Q і L — скінченне сепарабельне розширення поля Q. Ціле замиканням області A в полі L є кільцем Нетер.

Якщо A — нетерова цілозамкнута область, а S — нетерова область, що є скінченним розширенням кільця A, то для довільного простого ідеала кільця A, якщо мінімальний простий ідеал кільця S, що містить тоді Зокрема для цього випадку теорема спуску виконується без додаткових умов.

Нехай A — нетерова цілозамкнута область, а S — нетерова область, що є скінченним розширенням кільця A. Тоді для довільного ідеала кільця S виконується рівність , де позначає висоту ідеала.

Нормальні кільця[ред. | ред. код]

Нормальним кільцем називається кільце, для якого всі локалізації по простих ідеалах є цілозамкнутими областями. Таке кільце є редукованим, тобто не містить нільпотентних елементів крім 0,[3]. Якщо A є нетеровим кільцем, для якого всі локалізації по максимальних ідеалах є областями цілісності, то A є скінченним добутком областей цілісності.[4] Зокрема, якщо A є нетеровим нормальним кільцем, то воно є скінченним добутком цілозамкнутих областей.[5] Навпаки, скінченний добуток цілозамкнутих областей є нормальним кільцем.

Нехай A — нетерове кільце. Критерій Серра стверджує, що A є нормальним, якщо і тільки якщо воно задовольняє такі умови: для будь-якого простого ідеала ,

Цілком цілозамкнуті області[ред. | ред. код]

Нехай A — область і K її поле часток. Елемент називається майже цілим над A якщо підкільце A[x] кільця K породжене A і x є дробовим ідеалом кільця A; тобто, якщо існує , для якого для всіх . Область A називається цілком цілозамкнутою якщо всі майже цілі елементи поля K належать A. Цілком цілозамкнута область є цілозамкнутою. Навпаки, нетерова цілозамкнута область є цілком цілозамкнутою.

Припустимо, що область A є цілком цілозамкнутою. Тоді кільце формальних степеневих рядів є цілком цілозамкнутим. Аналог цього твердження для цілозамкнутих областей є невірним: якщо R є кільцем нормування висоти не менше 2 (це кільце є цілозамкнутим), то не є цілозамкнутим [7] Нехай L — розширення поля K. Тоді ціле замикання кільця A в L є цілком цілозамкнутим.

Область цілісності є цілком цілозамкнут, якщо і тільки якщо моноїд дивізорів A є групою.[8]

Локалізація цілком цілозамкнутого кільця може не бути цілком цілозамкнутою.

Див. також[ред. | ред. код]

References[ред. | ред. код]

  1. Robert B. Ash , A Course In Commutative Algebra. Ch 3 Valuation Rings, ст. 4.
  2. Matsumura, теорема 9.2
  3. Якщо всі локалізації по максимальних ідеалах комутативного кільця R є редукованими (наприклад областями цілісності), то R теж є редукованим. Доведення: Припустимо x є ненульовим елементом в R і xn=0. Анігілятор ann(x) міститься в деякому максимальному ідеалі . Образ елемента x є ненульовим в локалізації кільця R по ідеалу оскільки в іншому випадку для деякого і належить анігілятору x, всупереч означенню . Тому локалізація R по не є редукованим кільцем.
  4. Kaplansky, теорема 168, pg 119.
  5. Matsumura 1989, p. 64
  6. Matsumura, Commutative algebra, pg. 125.
  7. Matsumura, Exercise 10.4
  8. Bourbaki, Ch. VII, § 1, n. 2, теорема 1

Література[ред. | ред. код]